首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CO2 sensitivity of transjunctional voltage (V j) gating was studied by dual voltage clamp in oocytes expressing mouse Cx40 or its COOH terminus (CT)-truncated mutant (Cx40-TR). V j sensitivity, determined by a standard V j protocol (20 mV V j steps, 120 mV maximal), decreased significantly with exposure to 30% CO2. The Boltzmann values of control versus CO2-treated oocytes were: V 0 = 36.3 and 48.7 mV, n = 5.4 and 3.7, and G j min = 0.21 and 0.31, respectively. CO2 also affected the kinetics of V j-dependent inactivation of junctional current (I j); the time constants of two-term exponential I j decay, measured at V j = 60 mV, increased significantly with CO2 application. Similar results were obtained with Cx40-TR, suggesting that CT does not play a role in this phenomenon. The sensitivity of Cx40 channels to 100% CO2 was also unaffected by CT truncation. There is evidence that CO2 decreases the V j sensitivity of Cx26, Cx50 and Cx37 as well, whereas it increases that of Cx45 and Cx32 channels. Since Cx40, Cx26, Cx50 and Cx37 gate at the positive side of V j, whereas Cx45 and Cx32 gate at negative V j, it is likely that V j behavior with respect to CO2-induced acidification varies depending on gating polarity, possibly involving the function of the postulated V j sensor (NH2-terminus).This revised version was published online in June 2005 with a corrected cover date.  相似文献   

2.
Summary The presence of a Ca2+ channel in the plasmalemma of tonoplast-freeNitellopsis obtusa cells was demonstrated and its characteristics were studied using current- and voltage-clamp techniques. A long-lasting inward membrane current (I m ), recorded using a step voltage clamp, consisted of a single component without time-dependent inactivation. Increasing either [Ca2+] o or [Cl] o 1) enhanced the maximum amplitude of inwardI m ((I m ) p ) and 2) shifted the peak voltage ((V m ) p ) at(I m ) p to more positive values under ramp-shaped voltage clamping and 3) depolarized the peak value of action potentials. This behavior is consistent with predictions based on the Nernst equation for Ca2+ but not for Cl. DIDS (4,4-diisothiocyano-2,2-disulfonic acid stilbene) did not suppress(I m ) p in tonoplast-free cells, in contrast with its effect on normal cells. La3+ and nifedipine blocked(I m ) p irreversibly. On the other hand, Ca2+ channel agonist, BAY K 8644 irreversibly enhanced(I m ) p . Both Sr2+ influx and K+ efflux increased upon excitation. The charge carried by Sr2+ influx was compensated for by K+ efflux. It is concluded that only the Ca2+ channel is activated during plasmalemma excitation in tonoplast-free cells. In terms of the magnitude of(I m ) p , Sr2+ could replace Ca2+, but Mn2+, Mg2+ and Ba2+ could not. External pH affected(I m ) p and the membrane conductance (g m ) at(I m ) p ((g m ) p ). Increasing the external ionic strength caused increases in both(I m ) p and(g m ) p , and shifted(V m ) p to positive values. At the same time, Sr2+ influx increased. Thus Ca2+ channel activation seems to be enhanced by increasing external ionic strength. The possible involvement of surface potential is discussed.  相似文献   

3.
A mononuclear cobalt(II) complex, [Co(ac)2(H2O)2(MeIm)2], with heteroleptic coordination sphere possessing the {CoO2O′2N2} chromophore has been prepared and structurally characterized. The magnetic data down to 2 K show an enhanced magnetic anisotropy manifesting itself in a large zero-field splitting (ZFS) parameter. As a consequence, the magnetization deviates substantially from the Brillouin-function behavior. A fit to the zero-field splitting model gave the following set of magnetic parameters: D/hc = +95 cm−1, gx = 2.530, zj/hc = −0.078, χTIP = 16.7 × 10−9 m3 mol−1, (gz = 2.0). The Griffith-Figgis model and the Generalized Crystal-Field model lie beyond the spin-Hamiltonian formalism; they gave analogous, although not identical ZFS parameters: D/hc = 109 cm−1, and D/hc = 77 cm−1, respectively. The absorption spectrum taken in the FAR-IR region exhibits manifold absorption peaks referring to the transitions among the crystal-field multiplets of the parent 4A2g + 4Eg terms (D4h), originating in a crystal-field splitting of the octahedral 4T1g ground term.  相似文献   

4.
5.
Self-referencing ion - selective electrodes (ISEs), made with Chloride Ionophore I-Cocktail A (Fluka), were positioned 1–3 μm from human embryonic kidney cells (tsA201a) and used to record chloride flux during a sustained hyposmotic challenge. The ISE response was close to Nernstian when comparing potentials (VN) measured in 100 and 10 mM NaCl (ΔVN = 57 ± 2 mV), but was slightly greater than ideal when comparing 1 and 10 mm NaCl (ΔVN = 70 ± 3 mV). The response was also linear in the presence of 1 mm glutamate, gluconate, or acetate, 10 μm tamoxifen, or 0.1, 1, or 10 mm HEPES at pH 7.0. The ISE was ∼3 orders of magnitude more selective for Cl over glutamate or gluconate but less than 2 orders of magnitude move selective for Cl over bicarbonate, acetate, citrate or thiosulfate. As a result this ISE is best described as an anion sensor. The ISE was ‘poisoned’ by 50 μm 5−nitro-2-(3phenylpropyl-amino)-benzoic acid (NPPB), but not by tamoxifen. An outward anion efflux was recorded from cells challenged with hypotonic (250 ± 5 mOsm) solution. The increase in efflux peaked 7–8 min before decreasing, consistent with regulatory volume decreases observed in separate experiments using a similar osmotic protocol. This anion efflux was blocked by 10 μm tamoxifen. These results establish the feasibility of using the modulation of electrochemical, anion-selective, electrodes to monitor anions and, in this case, chloride movement during volume regulatory events. The approach provides a real-time measure of anion movement during regulated volume decrease at the single-cell level.  相似文献   

6.
To gain information on extended flight energetics, quasi-natural flight conditions imitating steady horizontal flight were set by combining the tetheredflight wind-tunnel method with the exhaustion-flight method. The bees were suspended from a two-component aerodynamic balance at different, near optimum body angle of attack and were allowed to choose their own speed: their body mass and body weight was determined before and after a flight; their speed, lift, wingbeat frequency and total flight time were measured throughout a flight. These values were used to determine thrust, resultant aerodynamic force (magnitude and tilting angle), Reynolds number, total flight distance and total flight impulse. Flights in which lift was body weight were mostly obtained. Bees, flown to complete exhausion, were refed with 5, 10, 15 or 20 l of a 1.28-mol·l-1 glucose solution (energy content w=18.5, 37.0, 55.5 or 74.0 J) and again flown to complete exhaustion at an ambient temperature of 25±1.5°C by a flight of known duration such that the calculation of absolute and relative metabolic power was possible. Mean body mass after exhaustion was 76.49±3.52 mg. During long term flights of 7.47–31.30 min similar changes in flight velocity, lift, thrust, aerodynamic force, wingbeat frequency and tilting angle took place, independent of the volume of feeding solution. After increasing rapidly within 15 s a more or less steady phase of 60–80% of total flight time, showing only a slight decrease, was followed by a steeper, more irregular decrease, finally reaching 0 within 20–30 s. In steady phases lift was nearly equal to resultant aerodynamic force; tilting angle was 79.8±4.0°, thrust to lift radio did not vary, thrust was 18.0±7.4% of lift, lift was somewhat higher/equal/lower than body mass in 61.3%, 16.1%, 22.6% of all totally analysable flights (n=31). The following parameters were varied as functions of volume of feeding solution (5–20 l in steps of 5 l) and energy content. (18.5–74.0 J in steps of 18.5 J): total flight time, velocity, total flight distance, mean lift, thrust, mean resultant aerodynamic force, tilting angle, total flight impulse, wingbeat frequency, metabolic power and metabolic power related to body mass, the latter related to empty, full and mean (=100 mg) body mass. The following positive correlations were found: L=1.069·10-9 f 2.538; R=1.629·10-9 f 2.464; P m=7.079·10-8 f 2.456; P m=0.008v+0.008; P m=18.996L+0.022; P m=19.782R+0.021; P m=82.143T+0.028; P m=1.245·bm f 1.424 ; P mrel e=6.471·bm f 1.040 ; =83.248+0.385. The following negative correlations were found: V=3.939–0.032; T=1.324·10-4–0.038·10-4. Statistically significant correlations were not found in T(f), L(), R(), f(), P m(bm e), P m rel e(bm e), P m rel f(bm e), P m rel f(bm f).Abbreviations A(m2) frontal area - bl(m) body length - bm(mg) body mass - c(mol·1-1) glucose concentration of feeding solution - c D (dimensionless) drag coefficient, related to A - D(N) drag - F w(N) body weight - F wp weight of paper fragment lost at flight start - f wingbeat frequency (s-1) - g(=9.81 m·s-2) gravitational acceleration - I(Ns)=R(t) dt total impulse of a flight - L(N) lift vertical sustaining force component - P m(J·s-1=W) metabolic power - Pm ret (W·g-1) metabolic power, related to body mass - R(N) resultant aerodynamic force - Re v·bl·v -1 (dimensionless) Reynolds number, related to body length - s(m) v(t) dt virtual flight distance of a flight - s(km) total virtual flight distance - T (N) thrust horizontal force component of horizontal flight - T a (°C) ambient temperature - t(s) time - t tot (s or min) total flight time - v(m·s-1) flight velocity - v(l) volume of feeding solution - W (J) energy and energy content of V - ( °) body angle of attack between body longitudinal axis and flow direction - ( °) tilting angle ( 90°) between R and the horizont in horizontal flight v(=1.53·10-5m2·s-1 for air at 25°) kinematic viscosity - (=1.2 kg·m-3 at 25°C) air density  相似文献   

7.
The copper(II), nickel(II) and silver(I) complexes of the pentadentate 17-membered macrocycle 1, 12, 15-triaza-3, 4:9, 10-dibenzo-5,8-dithiacycloheptadecane (L1) have been prepared as perchlorates and characterized by X-ray crystallography. The N3S2 ligand uses all donor atoms for complexation. The copper coordination is square pyramidal with one sulfur atom in the axial site. Ni(II) displays an octahedral coordination by an interaction with a water molecule. The Ag(I) coordination is best described as a distorted pentagonal bipyramid. In [CuL1]2+ the 1, 4, 7-triazaheptane fragment of L1 is meridionally coordinated, but facially in [NiL1(H2O)]2+ and intermediate in [AgL1](ClO4). Crystal data for [CuL1](ClO4)2: monoclinic, space group P21/n, a = 13.153(8), b = 11.951(5), c = 17.880(8)Å, β = 110.29(4)°, Z = 4, R = 0.086 for 2732 independent reflections with I 2σ(I); [NiL1(H2O)](ClO4)2: monoclinic, P21/a, a = 10.771(2), b= 16.157(2), c = 15.286(2) Å, β =93.08(1)°, Z = 4, R = 0.085 for 1464 independent reflections with I 2σ(I); [AgL1](ClO4): monoclinic, P21/n, a = 12.708(9), b = 9.483(7), c = 19.569(13) Å, β= 103.95(6)°, Z = 4, R = 0.039 for 3600 independent reflections with I 2σ(I).  相似文献   

8.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

9.
Store-operated Ca2+ influx, suggested to be mediated via store-operated cation channel (SOC), is present in all cells. The molecular basis of SOC, and possible heterogeneity of these channels, are still a matter of controversy. Here we have compared the properties of SOC currents (I SOC) in human submandibular glands cells (HSG) and human parotid gland cells (HSY) with I CRAC (Ca2+ release-activated Ca2+ current) in RBL cells. Internal Ca2+ store-depletion with IP3 or thapsigargin activated cation channels in all three cell types. 1 μM Gd3+ blocked channel activity in all cells. Washout of Gd3+ induced partial recovery in HSY and HSG but not RBL cells. 2-APB reversibly inhibited the channels in all cells. I CRAC in RBL cells displayed strong inward rectification with E rev(Ca) = >+90 mV and E rev (Na) = +60 mV. I SOC in HSG cells showed weaker rectification with E rev(Ca) = +25 mV and E rev(Na) = +10 mV. HSY cells displayed a linear current with E rev = +5 mV, which was similar in Ca2+- or Na+-containing medium. pCa/pNa was >500, 40, and 4.6 while pCs /pNa was 0.1,1, and 1.3, for RBL, HSG, and HSY cells, respectively. Evidence for anomalous mole fraction behavior of Ca2+/Na+ permeation was obtained with RBL and HSG cells but not HSY cells. Additionally, channel inactivation with Ca2+ + Na+ or Na+ in the bath was different in the three cell types. In aggregate, these data demonstrate that distinct store-dependent cation currents are stimulated in RBL, HSG, and HSY cells. Importantly, these data suggest a molecular heterogeneity, and possibly cell-specific differences in the function, of these channels.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

10.
We studied macroscopic ion currents from macrophages and compared their patterns of behavior using classical and fractal analysis. Peak and steady state currents were measured respectively at the beginning and end of a voltage-clamp pulse. Hurst coefficients H and fractional dimensions were calculated for the current fluctuations (I H ) during the intervening interval; these fluctuations are usually assumed to be white noise. We show that I H is different from 0.5 and that the increments are stationary, indicating that the dynamic model has memory and that the intervening current fluctuations cannot be considered as white noise. I H is less than 0.5, implying an antipersistent pattern. In addition, we show that the relation between inactivation and I H versus voltage V fit an equation I H (V) = f(V, α, m, d), where α is associated with fractional calculus and m and d are free parameters. Fitting by a fractional model confirms that the phenomenon has memory.  相似文献   

11.
Summary The conductance of the Ca2+-activated K+ channel (g K(Ca)) of the human red cell membrane was studied as a function of membrane potential (V m ) and extracellular K+ concentration ([K+]ex). ATP-depleted cells, with fixed values of cellular K+ (145mm) and pH (7.1), and preloaded with 27 m ionized Ca were transferred, with open K+ channels, to buffer-free salt solutions with given K+ concentrations. Outward-current conductances were calculated from initial net effluxes of K+, correspondingV m , monitored by CCCP-mediated electrochemical equilibration of protons between a buffer-free extracellular and the heavily buffered cellular phases, and Nernst equilibrium potentials of K ions (E K) determined at the peak of hyperpolarization. Zero-current conductances were calculated from unidirectional effluxes of42K at (V m –E K)0, using a single-file flux ratio exponent of 2.7. Within a [K+]ex range of 5.5 to 60mm and at (V m –E K) 20 mV a basic conductance, which was independent of [K+]ex, was found. It had a small voltage dependence, varying linearly from 45 to 70 S/cm2 between 0 and –100 mV. As (V m –E K) decreased from 20 towards zero mVg K(Ca) increased hyperbolically from the basic value towards a zero-current value of 165 S/cm2. The zero-current conductance was not significantly dependent on [K+]ex (30 to 156mm) corresponding toV m (–50 mV to 0). A further increase ing K(Ca) symmetrically aroundE K is suggested as (V m –E K) becomes positive. Increasing the extracellular K+ concentration from zero and up to 3mm resulted in an increase ing K(Ca) from 50 to 70 S/cm2. Since the driving force (V m –E K) was larger than 20 mV within this range of [K+]ex this was probably a specific K+ activation ofg K(Ca). In conclusion: The Ca2+-activated K+ channel of the human red cell membrane is an inward rectifier showing the characteristic voltage dependence of this type of channel.  相似文献   

12.
Biophysical characterization of zebrafish connexin35 hemichannels   总被引:1,自引:0,他引:1  
A subset of connexins can form unopposed hemichannels in expression systems, providing an opportunity for comparison of hemichannel gating properties with those of intact gap junction channels. Zebrafish connexin35 (Cx35) is a member of the Cx35/Cx36 subgroup of connexins highly expressed in the retina and brain. In the present study, we have shown that Cx35 expression in Xenopus oocytes and N2A cells produced large outward whole cell currents on cell depolarization. Using whole cell, cell-attached, and excised patch configurations, we obtained multichannel and single-channel current recordings attributable to the Cx35 hemichannels (Ihc) that were activated and increased by stepwise depolarization of membrane potential (Vm) and deactivated by hyperpolarization. The currents were not detected in untransfected N2A cells or in control oocytes injected with antisense Cx38. However, water-injected oocytes that were not treated with antisense showed activities attributable to Cx38 hemichannels that were easily distinguishable from Cx35 hemichannels by a significantly larger unitary conductance (hc: 250–320 pS). The hc of Cx35 hemichannels exhibited a pronounced Vm dependence; i.e., hc increased/decreased with relative hyperpolarization/depolarization (hc was 72 pS at Vm = –100 mV and 35 pS at Vm = 100 mV). Extrapolation to Vm = 0 mV predicted a hc of 48 pS, suggesting a unitary conductance of intact Cx35 gap junction channels of 24 pS. Channel gating was also Vm dependent: open time declined with negative Vm and increased with positive Vm. The ability to break down the complex gating of intact intercellular channels into component hemichannels in vitro will help to evaluate putative physiological roles for hemichannels in vivo. connexin; gating; retina  相似文献   

13.
The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state.Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P , with a = 9.022(2), b = 9.040(2), c = 8.409(2) Å, α = 103.51(2), β = 103.42(3), γ = 103.37(2)°, V = 642.9(3) Å3, Z = 1, Dx = 1.699 g cm−3, μ(Mo Kα) = 17.208 cm−1, F(000) = 336 and T= 295 K. A total of 2251 data were collected over the range 1θ25°; of these, 1993 (independent and with I3σ(I)) were used in the structural analysis. The final R and Rw residuals were 0.034 and 0.038 respectively. The structure contains squarato-O1, O3-bridged bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] units forming zigzag one-dimensional chains. Each copper atom is in a square-pyramidal environment with the two nitrogen atoms of 2,2′-bipyridyl and the two oxygen atoms of the hydroxo groups building the basal plane and another oxygen atom of the squarate lying in the apical position.The magnetic properties are discussed in the light of spectral and structural data and compared with the reported ones for other bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] complexes.  相似文献   

14.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

15.
Chromatographic separation of proteins by the gradient elution method using DEAE Toyopearl 650® was carried through. The concentration gradient was effected by changing the ionic strength of NaCl in the carrier buffer solution. Bovine serum albumin and hemoglobin were used as model proteins for separation. The experimental chromatogram was compared with theoretical results of Yamamoto et al. [1, 2]. Adsorption equilibria of the proteins onto the carrier were measured and expressed by a function of the ionic strength. The retention volume and peak width of the resulting chromatogram can be calculated from the equilibrium data using the Yamamoto theory. The calculated results agreed well with the experimental data.The method presented in this paper will be useful to predict the viability of ion-exchange chromatography in protein separation.List of Symbols c kg m–3 concentration in the liquid phase - c s kg m–3 concentration in the solid phase - D s m2 s–1 intraparticle diffusivity - d p m particle diameter - E z m2 s–1 longitudinal diffusivity of the protein - E z I m2 s–1 longitudinal diffusivity of ionic strength - H /(1 – ) - I kmol m–3 ionic strength - I O kmol m–3 initial ionic strength - I p kmol m–3 ionic strength at the peak - I s kmol m–3 ionic strength in the solid phase - I/V mol (dm3)–2 slope of the ionic gradient elution - m distribution coefficient - m distribution coefficient at I - m I distribution coefficient for ionic strength - Q cm3s–1 flow rate - R m particle radius - R s degree of separation - r m radial position inside particles - t s time - u m s–1 linear velocity - V cm3 eluted volume of liquid - V p cm3 eluted volume of liquid at the peak - V T cm3 volume of the packed bed - W cm3 peak width - Z m bed height - z m vertical position in the bed - z p m peak position from the inlet of the bed - (t) delta input at time - void fraction - 1 s first moment - 2 s2 second central moment - s superficial space time  相似文献   

16.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

17.
A method is developed for analyzing in a unified manner both uniaxial and uniform biaxial strain data obtained from nearly isotropic tissues. The formulation is a direct application of nonlinear elasticity theory pertaining to large deformations. The general relation between Eulerian stress (σ) and extension ratio (λ) in soft isotropic elastic bodies undergoing uniform deformation takes the simple form: σ = ((λ3 - 1)/λ) f(λ), where f(λ) must be determined for each material. The extension ratio may be either greater than 1.0 (uniaxial elongation), or lie between zero and 1.0 (uniform biaxial extension). Simple analytical functions for f(λ) are most readily found for each tissue by plotting all data as (λ3 - 1)/λσ vs. λ. Of those tissues investigated in this way (dog pericardium and pleura, and cat mesentery and dura), all but pleura could be adequately described by a parabola: 1/f(λ) = 1/k{[(λM - λ)(λ - λm)]/[λM - λm}. In these instances, three material constants per tissue (K, λM, λm) served to predict approximately the stresses attained during both small and large deformations, in strips and sheets alike. It was further found that the uniaxial strain asymptote (λM) was linearly related to the biaxial strain asymptote (ΛM), thus effectively reducing the number of constants by one.  相似文献   

18.
The anion channel protein from Clavibacter michiganense ssp. nebraskense (Schürholz, Th. et al. 1991, J. Membrane Biol. 123: 1-8) was analyzed at different concentrations of KCl and KF. At 0.8 M KCl the conductance G(Vm) increases exponentially from 21 pS at 50 mV up to 53 pS at Vm = 200 mV, 20°C. The concentration dependence of G(Vm) corresponds to a Michaelis-Menten type saturation function at all membrane voltage values applied (0-200 mV). The anion concentration K0.5, where G(Vm) has its half-maximum value, increases from 0.12 M at 50 mV to 0.24 M at 175 mV for channels in a soybean phospholipid bilayer. The voltage dependence of the single channel conductance, which is different for charged and neutral lipid bilayers, can be described either by a two-state flicker (2SF) model and the Nernst-Planck continuum theory, or by a two barrier, one-site (2B1S) model with asymmetric barriers. The increase in the number of open channels after a voltage jump from 50 mV to 150 mV has a time constant of 0.8 s. The changes of the single-channel conductance are much faster (<1 ms). The electric part of the gating process is characterized by the (reversible) molar electrical work ΔGθel = ρZgFVm ≈ -1.3 RT, which corresponds to the movement of one charge of the gating charge number |Zg| = 1 across the fraction ρ = ΔVm/Vm = 0.15 of the membrane voltage Vm = 200 mV. Unlike with chloride, the single channel conductance of fluoride has a maximum at about 150 mV in the presence of the buffer PIPES (≥5 mM, pH 6.8) with K0.5 ≈ 1 M. It is shown that the decrease in conductance is due to a blocking of the channel by the PIPES anion. In summary, the results indicate that the anion transport by the Clavibacter anion channel (CAC) does not require a voltage dependent conformation change of the CAC.  相似文献   

19.
20.
The problem of optimising agitation and aeration in a given fermenter is addressed. The objective function is total electric power consumed for agitation, compression and refrigeration. The major constraint considered is to ensure that the dissolved oxygen concentration is above the critical value. It is shown that it is possible to analytically calculate the optimal pair (air flowrate, stirrer speed) and that, at least for the industrial antibiotics fermentation used as case-study, the optimum lies within a window for satisfactory operation, limited by other possible constraints to the problem. Savings achievable by optimal operation as compared with current industrial procedure were found to be around 10% at pilot plant scale (0.26 m3) and 20% at full scale (85 m3).List of Symbols A fermenter cross sectional area (m2) - C dissolved oxygen concentration (mole m–3) - C * DO concentration in equilibrium with the gas (mole m–3) - C crit critical DO concentration (mole m–3) - C p specific heat of air at constant pressure (J kg–1 K–1) - C sp dissolved oxygen set point (mole m–3) - C v specific heat of air at constant volume (J kg–1 K–1) - D agitator diameter (m) - f pressure correction of air flow-rate - (Fl g)F aeration number at flooding - (Fr g)F froude number at flooding - k coefficient in expression for mass transfer coefficient - K La volumetric oxygen transfer coefficient (s–1) - m power exponent in expression for mass transfer coefficient - n gas flow rate exponent in expression for mass transfer coefficient - n * number of impellers - N rotation speed (s–1) - N F rotation speed at flooding (s–1) - N p unaerated power number - N pg aerated power number - OUR Oxygen Uptake Rate (mole m–3 s–1) - p 0 atmospheric pressure (N m–2) - p 1 compressor exit pressure (N m–2) - p 2 pressure at the bottom of the fermenter (N m–2) - p 3 pressure at the top of the fermenter (N m–2) - P c compression power (W) - P d power added by expansion (W) - P ev power removed by evaporation (W) - P g agitation power (W) - P m power added by metabolism (W) - P r power removed by refrigeration (W) - P t total power (W) - Q air flow-rate at atmospheric conditions (m3 s–1) - Q f air flow-rate at average fermenter conditions (m3 s–1) - s 0 absolute humidity at atmospheric conditions - s 3 absolute humidity at fermenter exit - T tank diameter (m) - V liquid volume (m3) - v s gas superficial velocity (m s–1) - i parameter defined in the text - safety margin for dissolved oxygen (mole m–3) - ratio of specific heats of air - g agitation efficiency - c compression efficiency - r refrigeration efficiency - liquid density (kg m–3) - g air density (kg m–3) - latent heat of vaporisation of water (J kg–1) The authors are grateful to Elsa Silva, Carlos Lopes, Carlos Aguiar, Fernando Mendes, and Alexandre Cardoso, who helped with parts of this work, and to CIPAN for permission to publish these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号