首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic rates and rectal temperatures were continuously monitored for humans immersed in cold ocean water (4.6--18.2 degrees C) under stimulated accident conditions. The subjects wore only light clothing and a kapok lifejacket while either holding-still or swimming. While holding-still, metabolic heat production (Hm,kcal-min--1) was inversely related to water temperature (Tw, degrees C) according to the equation Hm equals 4.19 minus-0.117 Tw. This temperature response pattern is shown to be similar to that for exposure to air of the same temperature when air velocity is just over 5 m.p.h. (2.24 m/s). The thermogenic response was one-third efficient in balancing the calculated heat loss in cold water, resulting in hypothermia at a rectal temperature cooling rate (C, degrees C-min--1) dependent on water temperature (Tw, degrees C) according to the relation C equal 0.0785 - 0.0034Tw. Although swimming increased heat production to 2.5 times that of holding-still at 10.5 degrees C water temperature, cooling rate was 35% greater while swimming. A prediction equation for survival time (ts, min) of persons accidentally immersed in cold water (Tw, degrees C) has the form ts equal 15 + 7.2/(0.0785-0.0034Tw), based on the findings of this study, and it is compared to pre-existing models.  相似文献   

2.
The effects of alcohol on core cooling rates (rectal and tympanic), skin temperatures, and metabolic rate were determined for 10 subjects rendered hypothermic by immersion for 45 min in 10 degrees C water. Experiments were duplicated with and without a 20-min period of exercise at the beginning of cold water immersion. Measurements were continued during rewarming in a hot bath. With blood alcohol concentrations averaging 82 mg 100 mL-1, core cooling rates and changes in skin temperatures were insignificantly different from controls, even if the exercise period was imposed. Alcohol reduced shivering metabolic rate by an overall mean of 13%, insufficient to affect cooling rate. Alcohol had no effect on metabolic rate during exercise. During rewarming by hot bath, the amount of 'afterdrop' and rate of increase in core temperature were unaffected by alcohol. It was concluded that alcohol in a moderate dosage does not influence the rate of progress into hypothermia or subsequent, efficient rewarming. This emphasizes that the high incidence of alcohol involvement in water-related fatalities is due to alcohol potentiation of accidents rather than any direct effects on cold water survival, although very high doses of alcohol leading to unconsciousness would increase rate of progress into hypothermia.  相似文献   

3.
To alleviate worker's thermal discomfort in a moderately hot environment, a new cooling vest was designed and proposed in this paper. To investigate the effect of the cooling vest and to collect the knowledge for the design of comfortable cooling vest, subjective experiments were conducted. Two kinds of cooling vests, the new one and the commercially available one, were used for comparison. The new cooling vest had more insulation and its surface temperature was higher than the commercially available one. Experiments were performed in the climatic chamber where operative temperature was controlled at 30.2 degrees C and relative humidity was at 37% under still air. In addition, experiment without cooling vest was carried out as a control condition. The results obtained in these experiments were as follow: 1) By wearing both types of cooling vest, the whole body thermal sensation was closer to the neutral conditions than those without cooling vest. This effect was estimated to be equal to the 5.7 degrees C decrement of operative temperature. The subjects felt more comfortable with the cooling vest than without it. They felt more thermally acceptable than that without cooling vest. Wearing the cooling vest was useful to decrease the sweating sensation. 2) The local discomfort was observed when the local thermal sensation was "cool" approximately "cold" with the cooling vest. 3) The new cooling vest kept the skin temperature at chest at about 32.6 degrees C. On the other hand, by wearing the commercially available one, it lowered to about 31.1 degrees C. By wearing the new cooling vest, there was a tendency that local thermal sensation vote was higher and local comfort sensation vote was more comfortable than those of the condition wearing the commercially available one. It is important for the design of a comfortable cooling garment to prevent over-cool down from the body.  相似文献   

4.
Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P < 0.01). Heat loss from the dorsal head and upper chest was approximately proportional to the extra surface area that was immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.  相似文献   

5.
The purpose of the present study was to examine the effect of water temperature on the human body during low-intensity prolonged swimming. Six male college swimmers participated in this study. The experiments consisted of breast stroke swimming for 120 minutes in 23 degrees C, 28 degrees C and 33 degrees C water at a constant speed of 0.4 m.sec-1 in a swimming flume. The same subjects walked on a treadmill at a rate of approximately 50% of maximal oxygen uptake (VO2max) at the same relative intensity as the three swimming trials. Rectal temperature (Tre) in 33 degrees C water was unchanged during swimming for 120 minutes. Tre during treadmill walking increased significantly compared to the three different swimming trials. Tre, mean skin temperature (Tsk) and mean body temperature (Tb) in 23 degrees C and 28 degrees C water decreased significantly more than in both the 33 degrees C water and walking on land. VO2 during swimming in 23 degrees C water increased more than during swimming in the 28 degrees C and 33 degrees C trials; however, there were no significant differences in VO2 between the 23 degrees C swimming trial and treadmill walking. Heart rate (HR) during treadmill walking on land increased significantly compared with HR during the three swimming trials. Plasma adrenaline concentration at the end of the treadmill walking was higher than that at the end of each of the three swimming trials. Noradrenaline concentrations at the end of swimming in the 23 degrees C water and treadmill walking were higher than those during the other two swimming trials. Blood lactate concentration during swimming in 23 degrees C water was higher than that during the other two swimming trials and walking on land. These results suggest that the balance of heat loss and heat production is maintained in the warm water temperature. Therefore, a relatively warm water temperature may be desirable when prolonged swimming or other water exercise is performed at low intensity.  相似文献   

6.
A rapid cold hardening response was studied in diapause and non-diapause females of the predatory mite Euseius finlandicus. When laboratory reared diapause and non-diapause females were transferred and maintained from the rearing temperature of 20 degrees C for 2 h to -11.5 degrees C and -10 degrees C, 10 to 20% survived respectively. However, conditioning of diapause females for 4 h at a range of temperatures from 0 to 10 degrees C before their exposure for 2 h to -11.5 degrees C, increased survival to approximately 90%. Similarly, conditioning of non-diapause females for 4 h at 5 degrees C before their exposure for 2 h to -10 degrees C increased survival to 90%. A similar rapid cold hardening response in both diapause and non-diapause females was also induced through gradual cooling of the mites, at a rate of approximately 0.4 degrees C per min. The rapid increase in cold tolerance after prior conditioning of the mites to low temperatures, was rapidly lost when they returned to a higher temperature of 20 degrees C. Rapid cold hardening extended the survival time of diapause and non-diapause females at sub-zero temperatures. The cost of rapid cold hardening in reproductive potential after diapause termination was negligible. In non-diapause females, however, the increase in cold tolerance gained through gradual cooling could not prevent cold shock injuries, as both fecundity and survival were reduced.  相似文献   

7.
Changes of the main organism functions (breathing frequency, heart rate and shivering) were investigated under hypothermia in two groups of rats. Animals of the first group were fixed rigidly on the special platform with fixing of head and limbs, and those of the second one--the rats, were placed in a punched cylindrical chamber, inside which they could move freely forward and back. In 2.5-3.0 hours after anaesthesia the rats were placed in a refrigerator (-5 degrees C) until they stop breathing. Cessation of breathing of the first group rats occurred in 1.7 +/- 0.3 hours from the beginning of cooling at body temperature 17.3 +/- 0.6 degrees C and the brain temperature 15.7 +/- 0.5 degrees C. In the second group, a prolonged activation of the frequency of breathing, heart rate and intensity of electrical activity of muscles during 2.5-3.0 hours, was observed. Only in 4.5-5.0 hours, the breathing stopped at rectal temperature 12.3 +/- 1.1 degrees C and the brain temperature 12.9 +/- 0.9 degrees C. In these animals, the time of survival in the cold environment increased considerably and the temperature thresholds of the termination of breathing were lowered. Thus, the activation in the thermo-regulative muscle tone and in shivering muscles provides the most effective resistance against cooling of rats, reducing a surface of heat, dissipation and keeping the temperature of internal areas of body.  相似文献   

8.
This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P < 0.05) and the body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P < 0.02). Submersion of the head (7% of the body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.  相似文献   

9.
Effects of oral vitamin E supplementation on blood malondialdehyde (MDA), glutathione (GSH) and vitamin E levels and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzyme activities in acute hypothermia of guinea-pigs were investigated. Thirty male guinea pigs, weighing 500-800 g were randomly divided into one of three experimental groups: A (control, without cooling), B (hypothermic) and C (hypothermic with vitamin E supplementation). The guinea-pigs of group C received daily oral supplementation of 460 mg kg(-1) bw vitamin E for 4 days before inducing hypothermia. Twenty-four hours after the last vitamin E supplementation, the guinea-pigs of the B and C groups were cooled by immersion into cold water (10-12 degrees C), and the control guinea-pigs were immersed into water of body temperature (37 degrees C) up to the neck for 5 min without using any anaesthetic or tranquilizer. Rectal body temperatures of groups were measured and blood samples for biochemical analysis were collected immediately after the cooling. The body temperature, GSH and vitamin E levels and GSH-Px enzyme activity of hypothermic guinea-pigs were lower (p < 0.05), but SOD enzyme activity was not different (p > 0.05) from those of control animals. Although, the body temperature of hypothermic with vitamin E supplementation group was lower (p < 0.05), all other parameters of this group were not different (p > 0.05) from the controls. It was concluded that oral supplementation of vitamin E can alleviate the lipid peroxidation-induced disturbances associated with hypothermia by increasing the serum vitamin E level to normal. However, more studies are needed to prove whether this vitamin can improve quality of life during the cold seasons.  相似文献   

10.
The aim of this study was to ascertain whether repeated local cooling induces the same or different adaptational responses as repeated whole body cooling. Repeated cooling of the legs (immersion into 12 degrees C water up to the knees for 30 min, 20 times during 4 weeks = local cold adaptation - LCA) attenuated the initial increase in heart rate and blood pressure currently observed in control subjects immersed in cold water up to the knees. After LCA the initial skin temperature decrease tended to be lower, indicating reduced vasoconstriction. Heart rate and systolic blood pressure appeared to be generally lower during rest and during the time course of cooling in LCA humans, when compared to controls. All these changes seem to indicate attenuation of the sympathetic tone. In contrast, the sustained skin temperature in different areas of the body (finger, palm, forearm, thigh, chest) appeared to be generally lower in LCA subjects than in controls (except for temperatures on the forehead). Plasma levels of catecholamines (measured 20 and 40 min after the onset of cooling) were also not influenced by local cold adaptation. Locally cold adapted subjects, when exposed to whole body cold water immersion test, showed no change in the threshold temperature for induction of cold thermogenesis. This indicates that the hypothermic type of cold adaptation, typically occurring after systemic cold adaptation, does not appear after local cold adaptation of the intensity used. It is concluded that in humans the cold adaptation due to repeated local cooling of legs induces different physiological changes than systemic cold adaptation.  相似文献   

11.
蠋蝽抗寒性对快速冷驯化的响应及其生理机制   总被引:1,自引:0,他引:1  
快速冷驯化可以提高某些昆虫的耐寒性.为了探讨不同冷驯化诱导温度对蝎蝽抗寒性的影响及其生理机制,以室内人工饲养的第3代蝎蝽成虫为对象,利用热电偶、液相色谱分析等技术手段,测定了经15、10、4℃冷驯化4h和梯度降温(依次在15、10、4℃各驯化4h)冷驯化后,蠋蝽成虫过冷却点、虫体含水率及小分子碳水化合物、甘油和氨基酸含量,及其在不同暴露温度(0、-5、-10℃)下的耐寒性.结果表明:处理后暴露在-10℃时,梯度处理组和4℃冷驯化处理组的蝎蝽成虫存活率为58.3%,其他处理组及对照组(室温饲养)的存活率显著降低,平均为8.9%;梯度处理组与4℃冷驯化处理组蠋蝽成虫过冷却点平均为-15.6℃,比其他处理平均降低1.3℃;各处理虫体含水率无显著差异,平均为61.8%;与其他各组相比,梯度处理组和4℃冷驯化组蠋蝽成虫的葡萄糖、山梨醇和甘油含量分别增加2.82、2.65和3.49倍,丙氨酸和谷氨酸含量分别增加51.3%和80.2%,海藻糖、甘露糖和脯氨酸含量分别下降68.4%、52.2%和30.2%,而果糖含量各组间无显著差异.快速冷驯化对蠋蝽成虫具有临界诱导温度值,梯度降温驯化不能在快速冷驯化的基础上提高蠋蝽成虫的抗寒性.  相似文献   

12.
Peripheral blood flow during rewarming from mild hypothermia in humans   总被引:2,自引:0,他引:2  
During the initial stages of rewarming from hypothermia, there is a continued cooling of the core, or after-drop in temperature, that has been attributed to the return of cold blood due to peripheral vasodilatation, thus causing a further decrease of deep body temperature. To examine this possibility more carefully, subjects were immersed in cold water (17 degrees C), and then rewarmed from a mildly hypothermic state in a warm bath (40 degrees C). Measurements of hand blood flow were made by calorimetry and of forearm, calf, and foot blood flows by straingauge venous occlusion plethysmography at rest (Ta = 22 degrees C) and during rewarming. There was a small increase in skin blood flow during the falling phase of core temperature upon rewarming in the warm bath, but none in foot blood flow upon rewarming at room air, suggesting that skin blood flow seems to contribute to the after-drop, but only minimally. Limb blood flow changes during this phase suggest that a small muscle blood flow could also have contributed to the after-drop. It was concluded that the after-drop of core temperature during rewarming from mild hypothermia does not result from a large vasodilatation in the superficial parts of the periphery, as postulated. The possible contribution of mechanisms of heat conduction, heat convection, and cessation of shivering thermogenesis were discussed.  相似文献   

13.
In mink (Mustela vison) kits newborn mortality is very high. One of the major causes of death is hypothermia. The objectives of this study were to observe the development of thermoregulation in mink kits, and their ability to maintain their body temperature during the postnatal period (1-50 days of age). Based on the kit's body weight (BW), and rectal and ambient temperature measurements during cold (+4 degrees C) and warm (+40 degrees C) exposures, a homeothermy index (HI) and cooling and warming rates were calculated. No significant differences in the body temperatures were found between the kits and the dam after 36 days of age. The kits were able to maintain homeothermy by 22 days of age (HI 90%). The body cooling rate was 0.88+/-0.04 degrees C min(-1) on day 1 but only 0.35+/-0.03 degrees C min(-1) at 22 days of age. The body WR was lower: day 1, 0.85+/-0.04 degrees C min(-1) and 0.22+/-0.03 degrees C min(-1) at 22 days of age. All measured and calculated thermophysiological variables were significantly influenced by BW and age of the kit.  相似文献   

14.
To investigate the effect of cold water on swimming four men who declared themselves good swimmers were immersed fully clothed on separate days in water at 23·7° and 4·7° C. The time that they were able to swim in the cold water was much shorter than in the warm. The two shortest swims ended after 1·5 and 7·6 minutes, before rectal temperature fell, when the men suddenly floundered after developing respiratory distress with breathing rates of 56–60/min. The other cold swims, by the two fattest men, ended less abruptly with signs of general and peripheral hypothermia.It is concluded that swimming in cold water was stopped partly by respiratory reflexes in the thin men and hypothermia in the fat, and partly by the cold water''s high viscosity. The longer swimming times of the fat men are attributed largely to their greater buoyancy enabling them to keep their heads above water during the early hyperventilation.The findings explain some reports of sudden death in cold water. It is clearly highly dangerous to attempt to swim short distances to shore without a life-jacket in water near 0° C.  相似文献   

15.
An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53-80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40-65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.  相似文献   

16.
To study the mechanism of action of physical antipyresis, core temperature was measured in two groups of rats in which heat loss was increased by cold exposure and by cooling an inferior cava heat exchanger, respectively, both before and after infection with Salmonella enteritidis. Cold exposure did not influence core temperature. On the other hand, cooling the heat exchanger caused a fall in core temperature of approximately 0.7 degree C, to 37 degrees C in normothermia and to 38.5 degrees C 24 h after the infection. These lower core temperatures were then regulated against any further increase in heat loss until the thermoregulatory metabolic capacity of the animals was exhausted and a hypothermia developed. It is concluded that in infectious fever the threshold temperature of shivering increases as much as core temperature. Furthermore it is suggested that physical antipyresis, such as sponging with tepid water, induces a moderate but regulated fall in temperature to about the threshold of shivering and that its efficacy may increase with ambient temperature.  相似文献   

17.
This is the first report on the effects of a single bout of swimming to exhaustion in cold water on rat erythrocyte deformability, aggregation and fatty acid composition in erythrocyte membranes. The results indicate that there was a significant decrease in body temperature of experimental rats swimming in water at 4 degrees C and 25 degrees C when compared to the control. Erythrocyte aggregation indices did not change after swimming in water at 4 degrees C whereas erythrocyte deformability increased at shear stress 1,13 [Pa] and 15,96 [Pa]. Physical effort performed in water at 4 degrees C when compared to the control group resulted in an increase in monounsaturated and polyunsaturated n-3 fatty acid content in erythrocyte membranes that influenced the increase in their fluidity and permeability even though that of polyunsaturated n-6 fatty acids decreased. Physical effort performed in 25 degrees C water resulted in an increase in saturated fatty acid content and a decrease in all polyunsaturated fatty acids and polyunsaturated n-6 fatty acids when compared to the control group. Swimming of untrained old rats in cold water affected rheological properties oferythrocytes in a negligible way while changes in the fatty acid composition of erythrocyte membranes were more pronounced.  相似文献   

18.
The study investigated the effects of expectancy on the reduction of cold pressor test pain using heart rate biofeedback training. Thirty-six male subjects were given an initial 45-sec cold pressor test, 25 heart rate decrease feedback training trials, and a final cold pressor test in which they were told to decrease their heart rate, but without the aid of feedback. Two levels of outcome expectancy (increase pain, decrease pain) and two levels of cold pressor water temperature (0 degrees C, 5 degrees C), resulting in four groups (N = 9 per group), were used to assess the interaction between expectancy and aversive stimulus intensity. Immediately prior to the final cold pressor test, the increase pain expectancy subjects were told that decreasing their heart rate during the ice water immersion would cause more pain. Decrease pain subjects were told that decreasing their heart rate would cause less pain. Expectancy was found to be the major determinant of pain reports. The decrease pain subjects consistently reported less pain on the final cold pressor, whereas the increase pain subjects consistently reported more pain. Contrary to prediction, expectancy effects were greater for the colder water. The findings indicate the importance of expectancy in the clinical use of biofeedback to control pain.  相似文献   

19.
Recent studies using inanimate and animal models suggest that the afterdrop observed upon rewarming from hypothermia is based entirely on physical laws of heat flow without involvement of the returning cooled blood from the limbs. During the investigation of thermoregulatory responses to cold water immersion (15 degrees C), blood flow to the limbs (minimized by the effects of hydrostatic pressure and vasoconstriction) was occluded in 17 male subjects (age, 29.0 +/- 3.3 yr). Comparisons of rectal (Tre) and esophageal temperature (Tes) responses were made during the 5 min before occlusion, during the 10-min occlusion period, and for 5 min immediately after the release of the cuffs (postocclusion). In the preocclusion phase, Tre and Tes showed similar cooling rates. The occlusion of blood flow to the extremities significantly arrested the cooling of Tes (P less than 0.05) with little effect on Tre. Upon release of the pressure cuffs, the returning extremity blood flow resulted in an increased rate of cooling, that was three times greater at the esophageal site (-0:149 +/- 0.052 vs. -0.050 +/- 0.026 degrees C.min-1). These results suggest that the cooled peripheral circulation, minimized during cold water immersion, may dramatically affect esophageal temperature and the complete neglect of the circulatory component to the afterdrop phenomenon is not warranted.  相似文献   

20.
Liu XH  Zhang T  Rawson DM 《Theriogenology》2001,55(8):1719-1731
High chilling sensitivity is one of the main obstacles to successful cryopreservation of zebrafish embryos. So far the nature of the chilling injury in fish embryos has not been clear. The aim of this study is to investigate the effect of cooling rate and partial removal of yolk on chilling injury in zebrafish embryos. Zebrafish embryos at 64-cell, 50%-epiboly, 6-somite and prim-6 stages were cooled to either 0 degrees C or -5 degrees C at three different cooling rates: slow (0.3 degrees C/min or 1 degree C/min), moderate (30 degrees C/min), and rapid (approximately 300 degrees C/min). After chilling, embryos were warmed in a 26 degrees C water bath, followed by 3-day culturing in EM at 26 +/- 1 degrees C for survival assessment. When embryos were cooled to 0 degrees C for up to 30 min, 64-cell embryos had higher survival after rapid cooling than when they were cooled at a slower rate. When 64-cell embryos were held at -5 degrees C for 1 min, their survival decreased greatly after both slow and rapid cooling. The effect of cooling rate on the survival of 50%-epiboly and 6-somite embryos was not significant after 1 h exposure at 0 degrees C and 1 min exposure at -5 degrees C. However, rapid cooling resulted in significantly lower embryo survival than a cooling rate of 30 degrees C/min or 1 degree C/min after 1 h exposure to 0 degrees C for prim-6 stage or 1 h exposure to -5 degrees C for all stages. Chilling injury in 64-cell embryos appears to be a consequence of exposure time at low temperatures rather than a consequence of rapid cooling. Results also indicate that chilling injury in later stage embryos (50%-epiboly, 6-somite and prim-6) is a consequence of the combination of rapid cooling and exposure time at low temperatures. Dechorionated prim-6 embryos were punctured and about half of yolk was removed. After 24 h culture at 26 +/- 1 degrees C after removal of yolk, the yolk-reduced embryos showed higher embryo survival than did control embryos after rapid cooling to -5 degrees C for 10 to 60 min. Results suggest that cold shock injury after rapid cooling can be mitigated after partial removal of yolk at the prim-6 stage. These findings help us to understand the nature of chilling sensitivity of fish embryos and to develop protocols for their cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号