首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel uronic acid-containing glycosphingolipid (UGL-1) was isolated from the ascidian Halocynthia roretzi. UGL-1 was prepared from chloroform-methanol extracts and purified by the use of successive column chromatography on DEAE-Sephadex, Florisil, and Iatrobeads. Chemical structural analysis was performed using methylation analysis, gas chromatography, gas chromatography-mass spectrometry, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry, and 1H-NMR spectra. The chemical structure of UGL-1 was determined to be a glucuronic acid-containing glycosphingolipid, Galbeta1-4(Fucalpha1-3)GlcAbeta1-1Cer. The ceramide component was composed of C16:0 and C18:0 acids and C16-, C17-, and C18-phytosphingosines as major components.  相似文献   

2.
Aims:  To isolate a biosurfactant-producing bacterial strain and to identify and characterize the chemical structure and properties of its biosurfactants.
Methods and Results:  The bacterium Rhodococcus wratislaviensis BN38, isolated from soil, was found to produce glycolipid biosurfactants when grown on 2% n -hexadecane. The glycolipids were isolated by chromatography on silica gel columns and their structures elucidated using a combination of multidimensional NMR and ESI-MS/MS techniques. The main product was identified as 2,3,4,2'-trehalose tetraester with molecular mass of 876 g mol−1. It was also noted that the biosurfactant was produced under nitrogen-limiting conditions and could not be synthesized from water-soluble substrates. The purified product showed extremely high surface-active properties.
Conclusions:  The glycolipid biosurfactant produced by the alkanothrophic strain R. wratislaviensis BN38 was characterized to be 2,3,4,2'-trehalose tetraester which exhibited high surfactant activities.
Significance and Impact of the Study:  Strain BN38 of R. wratislaviensis is a potential candidate for use in bioremediation applications or in biosurfactant exploration.  相似文献   

3.
The entire genomic DNA sequences of a number of prokaryotic and eukaryotic species are now available and many more, including the human genome, will be completed in the near future. The state-of-life of a cell at any given time, however, is defined by its protein composition, i.e., its proteome. Gel electrophoresis, mass spectrometry, and bioinformatics will be important tools for protein and proteome analysis in the post-genome era. Protein identification from electrophoretic gels by mass spectrometric peptide mapping or peptide sequencing combined with sequence database searching is established and has been applied to numerous biological systems. We describe current strategies and selected applications in molecular and cell biology. The next challenges are detailed structure/function analyses, which include studying the molecular composition of multiprotein complexes and characterization of secondary modifications of proteins. The advantages and limitations of a number of mass spectrometry-based strategies designed for microcharacterization of low amounts of protein from electrophoretic gels are discussed and illustrated by examples. Proteins Suppl. 2:74–89, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Acidic glycosphingolipid components were extracted from the opportunistic mycopathogen Aspergillus fumigatus and identified as inositol phosphorylceramide and glycosylinositol phosphorylceramides (GIPCs). Using nuclear magnetic resonance sppectroscopy, mass spectrometry, and other techniques, the structures of six major components were elucidated as Ins-P-Cer (Af-0), Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-2), Manp(alpha1-->2)Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-3a), Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)-Ins-P-Cer (Af-3b), Manp(alpha1-->2)-Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)Ins-P-Cer (Af-4), and Manp(alpha1-->3)Manp(alpha1-->6)GlcpN(alpha1-->2)Ins-P-Cer (Af-3c) (where Ins = myo-inositol and P = phosphodiester). A minor A. fumigatus GIPC was also identified as the N-acetylated version of Af-3c (Af-3c*), which suggests that formation of the GlcNalpha1-->2Ins linkage may proceed by a two-step process, similar to the GlcNalpha1-->6Ins linkage in glycosylphosphatidylinositol (GPI) anchors (transfer of GlcNAc, followed by enzymatic de-N-acetylation). The glycosylinositol of Af-3b, which bears a distinctive branching Galf(beta1-->6) residue, is identical to that of a GIPC isolated previously from the dimorphic mycopathogen Paracoccidioides brasiliensis (designated Pb-3), but components Af-3a and Af-4 have novel structures. Overlay immunostaining of A. fumigatus GIPCs separated on thin-layer chromatograms was used to assess their reactivity against sera from a patient with aspergillosis and against a murine monoclonal antibody (MEST-1) shown previously to react with the Galf(beta1-->6) residue in Pb-3. These results are discussed in relation to pathogenicity and potential approaches to the immunodiagnosis of A. fumigatus.  相似文献   

5.
A mammalian N-acetylglucosamine (GlcNAc) transferase I (GnT I)-independent fucosylation pathway is revealed by the use of matrix-assisted laser desorption/ionization (MALDI) and negative-ion nano-electrospray ionization (ESI) mass spectrometry of N-linked glycans from natively folded recombinant glycoproteins, expressed in both human embryonic kidney (HEK) 293S and Chinese hamster ovary (CHO) Lec3.2.8.1 cells deficient in GnT I activity. The biosynthesis of core fucosylated Man5GlcNAc2 glycans was enhanced in CHO Lec3.2.8.1 cells by the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), leading to the increase in core fucosylated Man5GlcNAc2 glycans and the biosynthesis of a novel core fucosylated monoglucosylated oligomannose glycan, Glc1Man7GlcNAc2Fuc. Furthermore, no fucosylated Man9GlcNAc2 glycans were detected following inhibition of alpha-mannosidase I with kifunensine. Thus, core fucosylation is prevented by the presence of terminal alpha1-2 mannoses on the 6-antennae but not the 3-antennae of the trimannosyl core. Fucosylated Man5GlcNAc2 glycans were also detected on recombinant glycoprotein from HEK 293T cells following inhibition of Golgi alpha-mannosidase II with swainsonine. The paucity of fucosylated oligomannose glycans in wild-type mammalian cells is suggested to be due to kinetic properties of the pathway rather than the absence of the appropriate catalytic activity. The presence of the GnT I-independent fucosylation pathway is an important consideration when engineering mammalian glycosylation.  相似文献   

6.
A key virulence trait of pathogenic bacteria is the ability to bind to receptors on mucosal cells. Here the potential glycosphingolipid receptors of enterohemorrhagic Escherichia coli were examined by binding of 35S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. Thereby a selective interaction with two nonacid glycosphingolipids of cat small intestinal epithelium was found. The binding-active glycosphingolipids were isolated and, on the basis of mass spectrometry, proton NMR spectroscopy, and degradation studies, identified as Galalpha3Galbeta4Glcbeta1Cer (isoglobotriaosylceramide) and Galalpha3Galalpha3Galbeta4Glcbeta1Cer. The latter glycosphingolipid has not been described before. The interaction was not based on terminal Galalpha3 because the bacteria did not recognize the structurally related glycosphingolipids Galalpha3Galalpha4Galbeta4Glcbeta1Cer and Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer (B5 glycosphingolipid). However, further binding assays using reference glycosphingolipids showed that the enterohemorrhagic E. coli also bound to lactosylceramide with phytosphingosine and/or hydroxy fatty acids, suggesting that the minimal structural element recognized is a correctly presented lactosyl unit. Further binding of neolactotetraosylceramide, lactotetraosylceramide, the Le(a)-5 glycosphingolipid, as well as a weak binding to gangliotriaosylceramide and gangliotetraosylceramide, was found in analogy with binding patterns that previously have been described for other bacteria classified as lactosylceramide-binding.  相似文献   

7.
Plesiomonas shigelloides is a Gram-negative rod associated with episodes of intestinal infections and outbreaks of diarrhea in humans. The extraintestinal infections caused by this bacterium, for example, endopthalmitis, meningitidis, bacteremia, and septicemia, usually have gastrointestinal origin and serious course. The lipopolysaccharide (LPS, endotoxin) as virulence factor is important in enteropathogenicity of this bacterium. LPSs of P. shigelloides and especially their lipid A part, that is, the immunomodulatory center of LPS, have not been extensively investigated. The structure of P. shigelloides O54 lipid A was determined by chemical analysis combined with MALDI-TOF mass spectrometry, and the intact Kdo-containing core region was investigated by NMR spectroscopy on deacylated LPS. Products from alkaline deacylation of LPS, containing 4-substituted uronic acids, are usually very complex and difficult to separate. Since Kdo residues, like sialic acids, form complexes with serotonin, we used immobilized serotonin for one-step isolation of oligosaccharide containing the intact Kdo region from the reaction mixture by affinity chromatography. The major form of lipid A was built of beta-d-GlcpN4PPEtn-(1-->6)-alpha-d-GlcpN1P disaccharide substituted with 14:0(3-OH), 12:0(3-OH), 14:0(3-O-14:0), and 12:0(3-O-12:0) acyl groups at N-2, O-3, N-2', and O-3', respectively. This is a novel structure among known lipid A molecules. Analysis of intact Kdo-lipid A region, lipid A and its linkage with the core oligosaccharide completes the structural investigation of P. shigelloides O54 LPS, resolving the entire molecule. Biological activities and observed discrepancy between in vitro and in vivo activity of P. shigelloides and Escherichia coli LPS are discussed.  相似文献   

8.
Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information. Gel-free mass spectrometry proteomics techniques allow for rapid fingerprinting of bacterial proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or, for high-throughput sequencing of peptides from protease-digested cellular proteins, using mass analysis of fragments from collision-induced dissociation of peptide ions. The latter technique uses database searching of product ion mass spectra. A database contains a comprehensive list of protein sequences translated from protein-encoding open reading frames found in bacterial genomes. The results of such searches allow the assignment of experimental peptide sequences to matching theoretical bacterial proteomes. Phylogenetic profiles of sequenced peptides are then used to create a matrix of sequence-to-bacterium assignments, which are analyzed using numerical taxonomy tools. The results thereof reveal the relatedness between bacteria, and allow the taxonomic position of an investigated strain to be inferred.  相似文献   

9.
The stomatogastric ganglion (STG) and the cardiac ganglion (CG) of decapod crustaceans are modulated by neuroactive substances released locally and by circulating hormones released from neuroendocrine structures including the pericardial organs (POs). Using nanoscale liquid chromatography electrospray ionization quadrupole-time-of-flight tandem mass spectrometry and direct tissue matrix-assisted laser desorption/ionization Fourier transform mass spectrometry we have identified and sequenced a novel neuropeptide, GAHKNYLRFamide (previously misassigned as KHKNYLRFamide in a study that did not employ peptide derivatization), from the POs and/or the stomatogastric nervous system (STNS) of the crabs, Cancer borealis, Cancer productus and Cancer magister. In C. borealis, exogenous application of GAHKNYLRFamide increased the burst frequency and number of spikes per burst of the isolated CG and re-initiated bursting activity in non-bursting ganglia, effects also elicited by the FMRFamide-like peptides (FLPs) SDRNFLRFamide and TNRNFLRFamide. In the intact STNS (which contains the STG), exogenous application of GAHKNYLRFamide increased the frequency of the pyloric rhythm and activated the gastric mill rhythm, effects also similar to those elicited by SDRNFLRFamide and TNRNFLRFamide. FLP-like immunoreactivity in the POs and the STNS was abolished by pre-adsorption with the synthetic GAHKNYLRFamide. Different members of the FLP family exhibited differential degradation in the presence of extracellular peptidases. Taken collectively, the amino acid sequence of GAHKNYLRFamide, the blocking of FLP-like immunostaining, and its physiological effects on the CG and STNS suggest that this peptide is a novel member of the FLP superfamily.  相似文献   

10.
Treatment of bovine brain myelin basic protein with 42-kDa mitogen-activated protein kinase [p42 MAPK or extracellular signal-regulated kinase 2 (ERK2)] in the presence of ATP and Mg2+ results in phosphorylation of Thr94 and Thr97. Thr94 is not previously known to be an ERK2 phosphorylation site. Both residues are phosphorylated to about the same extent and are in the highly conserved segment Asn91-Ile-Val-Thr94-Pro-Arg-Thr97-Pro-Pro-Pro-Ser101. MALDI mass spectrometry before and after ERK2 treatment revealed the addition of two phosphate groups to the protein. Tryptic cleavage resulted in a single fragment (positions 91–104) carrying the observed mass increase. Tandem mass spectrometry applied to the tryptic peptide showed that both Thr94 and Thr97 are acceptors of phosphate. A singly phosphorylated species could not be detected. Identification of the ERK2 phosphorylation site Thr94 in bovine myelin basic protein reveals a nontraditional phosphate acceptor position, preceded by three noncharged residues (Asn-Ile-Val). Proline at position –2 or –3 from the phosphorylation site, typical for the recognition sequence of proline-directed kinases, is missing. The results provide information for delineation of a further substrate consensus motif for ERK2 phosphorylation.  相似文献   

11.
Here, we have extended shotgun lipidomics for the characterization and quantitation of sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (DHS1P) in crude lipid extracts in the presence of ammonium hydroxide by using precursor ion scanning of m/z 79.0 (corresponding to [PO(3)](-)) in the negative-ion mode. It is demonstrated that a broad linear dynamic range for the quantitation of both S1P and DHS1P and a detection limit at low amol/mul concentration are achieved using this approach. The developed method for the quantitation of sphingoid base-1-phosphates is generally simpler and more efficient than other previously published methods. Multiple factors influencing the quantitation of sphingoid base-1-phosphates, including ion suppression, extraction efficiency, and potential overlapping with other molecular species, were examined extensively and/or are discussed. Mass levels of S1P and DHS1P in multiple biological samples, including human plasma, mouse plasma, and mouse brain tissues (e.g., cortex, cerebellum, spinal cord, and brain stem), were determined by the developed methodology. Accordingly, this technique, as a new addition to shotgun lipidomics technology, will be extremely useful for understanding the pathways of sphingolipid metabolism and for exploring the important roles of sphingoid base-1-phosphates in a wide range of physiological and pathological studies.  相似文献   

12.
枯草芽孢杆菌JA产生的抗生素对植物病原真菌具有广谱抗性,明确抗生素的种类是进一步研究的基础.用6mol/L盐酸沉淀JA菌株的去菌体培养基,再用甲醇抽提获得抗生素的粗提物.利用反相HPLC系统,将粗提物过Diamonsil C18柱,收集有抗小麦赤霉病等病原真菌活性的化合物1、2.运用电喷雾质谱法(ESI/MS)测得其分子量分别为1042.4D和1056.5D.再利用碰撞诱导解离(CID)技术获得化合物的典型结构特征离子碎片,结果表明分子量为1042.4D的化合物一级结构为Pro-Asn-Tyr-βAA-Asn-Tyr-Asn-Gln(βAA为14个碳原子的氨基脂肪酸),属于脂iturin A.化合物1、2为相差一个亚甲基(-CH2)的iturin A同系物.研究结果提供了一种从枯草芽孢杆菌发酵液中快速分离纯化和鉴定脂肽类抗生素iturin A的新方法.  相似文献   

13.
Shigella flexneri is a gram-negative bacterium responsible for serious enteric infections that occur mainly in the terminal ileum and colon. High interest in Shigella, as a human pathogen, is driven by its antibiotic resistance and the necessity to develop a vaccine against its infections. Vaccines of the last generation use carbohydrate moieties of the lipopolysaccharide as probable candidates. For this reason, the primary structure of the core oligosaccharide from the R-LPS produced by S. flexneri M90T serotype 5 using chemical analysis, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MALDI), is herein reported. This is the first time that the core oligosaccharide primary structure by S. flexneri M90T is established in an unambiguous multidisciplinary approach. Chemical and spectroscopical investigation of the de-acetylated LPS showed that the inner core structure is characterized by a L,D-Hep-(1 -->7)-L,D-Hep-(1 -->3)-L,D-Hep-(1 -->5)-[Kdo-(2 -->4)]-Kdo sequence that is the common structural theme identified in Enterobacteriaceae. In particular, in S. flexneri M90T serotype 5 LPS, a glucosamine residue is additionally sitting at O-7 of the last heptose whereas the outer core is characterized by glucose and galactose residues. Also, in order to exactly define the position of glycine that is an integral constituent of the core region of the LPS, we created a S. flexneri M90T delta galU mutant and studied its LOS. In this way it was possible to establish that glycine is sitting at O-6 of the second heptose in the inner core.  相似文献   

14.
The current interest in applying systems biology approaches to studying an organism's form or function promises to reveal further insights into the role of glycosylation in cells and whole organisms. This has prompted the development of a rapid, sensitive method of profiling the glycan component of both glycosphingolipids and glycoproteins from a single sample. Here we report a new mass spectrometric screening strategy for characterizing glycosphingolipid-derived oligosaccharides, which can be integrated into an existing highly sensitive glycoprotein glycomics strategy. Using ceramide glycanase to release the glycans from glycosphingolipids, this method provides a reliable profile of the glycosphingolipid-derived glycans present in a sample and has revealed new glycan structures. Glycoproteins are also efficiently recovered using this method, allowing the subsequent analysis of glycoprotein-derived glycans by mass spectrometry. The high sensitivity of this glycomic screening method allowed us to directly characterize the sialyl Le(x) epitope from mouse brain for the first time, where it was observed on an O-mannose structure. Thus, we present a mass spectrometric method that allows glycomic screening of N- and O-glycans as well as glycosphingolipid-derived glycans from a single tissue.  相似文献   

15.
重金属污染对人类健康的威胁日益受到关注,为了了解大量重金属摄入对脑蛋白质的影响,对比研究了正常兔脑组织蛋白质与重金属铅腹腔注射2周后的兔脑组织在蛋白质双向电泳图谱中的差异,分析重金属注射对脑蛋白质表达的可能影响.通过对脑组织蛋白质的提取,分离出水溶性的蛋白质组分,经双向电泳图谱比较正常与注射重金属铅的兔子在脑蛋白质表达上的差异,其中3个蛋白质斑点经提取,反相高效液相色谱(RP-HPLC)分离,基质辅助激光解析电离质谱(MALDI-TOF MS)确定了分子质量,并利用肽质量指纹图谱检索数据库确定蛋白质的归属.实验结果表明正常兔脑与金属铅注射的兔脑在水溶性蛋白质的表达上具有显著性差异.  相似文献   

16.
The tau protein plays an important role in some neurodegenerative diseases including Alzheimer's disease (AD). Neurofibrillary tangles (NFTs), a biological marker for AD, are aggregates of bundles of paired helical filaments (PHFs). In general, the alpha-sheet structure favors aberrant protein aggregates. However, some reports have shown that the alpha-helix structure is capable of triggering the formation of aberrant tau protein aggregates and PHFs have a high alpha-helix content. In addition, the third repeat fragment in the four-repeat microtubule-binding domain of the tau protein (residues 306-336: VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQ, according to the longest tau protein) adopts a helical structure in trifluoroethanol (TFE) and may be a self-assembly model in the tau protein. In the human brain, there is a very small quantity of copper, which performs an important function. In our study, by means of matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy, the binding properties of copper (II) ion to the R3 peptide derived from the third repeat fragment (residues 318-335: VTSKCGSLGNIHHKPGGG) have been investigated. The results show that copper ions bind to the R3 peptide. CD spectra, ultraviolet (UV)-visible absorption spectra, and MALDI-TOF MS show pH dependence and stoichiometry of Cu2+ binding. Furthermore, CD spectra and NMR spectroscopy elucidate the copper binding sites located in the R3 peptide. Finally, CD spectra reveal that the R3 peptide adopts a mixture structure of random structures, alpha-helices, and beta-turns in aqueous solutions at physiological pH. At pH 7.5, the addition of 0.25 mol eq of Cu2+ induces the conformational change from the mixture mentioned above to a monomeric helical structure, and a beta-sheet structure forms in the presence of 1 mol eq of Cu2+. As alpha-helix and beta-sheet structures are responsible for the formation of PHFs, it is hypothesized that Cu2+ is an inducer of self-assembly of the R3 peptide and makes the R3 peptide form a structure like PHF. Hence, it is postulated that Cu2+ plays an important role in the aggregation of the R3 peptide and tau protein and that copper (II) binding may be another possible involvement in AD.  相似文献   

17.
Several pentavalent antimony compounds have been used for the treatment of leishmaniasis for decades. However, the mechanism of these antimony drugs still remains unclear. One of their targets is thought to be trypanothione, a major low molecular mass thiol inside the parasite. We show that pentavalent antimony (SbV) can be rapidly reduced to its trivalent state by trypanothione at mildly acidic conditions and 310 K (k=4.42 M–1 min–1 at pH 6.4), and that SbIII can be bound to trypanothione to form an SbIII-trypanothione complex. NMR data demonstrate that SbIII binds to trypanothione at the two thiolates of the cysteine residues, and that the binding is pH dependent and is strongest at biological pH with a stability constant logK=23.6 at 298 K (0.1 M NaNO3). The addition of low molecular monothiol ligands such as glutathione and cysteine to the SbIII-trypanothione complex results in the formation of a ternary complex. Thiolates from both trypanothione and monothiol bind to the SbIII center. The formation of the ternary complex is important, as the antileishmanial properties of the drugs are probably due to a complex between of SbIII-trypanothione and enzymes. Although thermodynamically stable, the complex is kinetically labile and the free and bound forms of thiolates exchange on the 1H NMR timescale. Such a facile exchange may be crucial for the transport of SbIII within parasites.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Abbreviations amastigote the parasites culture at pH 5.0 and 310 K to resume the intracellular form - BPR bromopyrogallol - ESI-MS electrospary ionization mass spectrometry - GSH glutathione - pH* pH meter reading in D2O without correction for isotope effects - promastigote the parasites culture at pH 7.4 and 298 K to resume the extracellular stage - T(SH)2 reduced form of trypanothione - T(S-S) oxidized form of trypanothione (disulfide form) - TR trypanothione reductase - tart tartrate  相似文献   

18.
19.
20.
Preeclampsia (PE) is a pathology of pregnancy which represents the main cause of maternal and perinatal morbidity and mortality. Defective placentation is the first event of this pathology. The purpose of this study was to identify the proteins secreted by cytotrophoblastic cells (CTB) using proteomic approach that are associated with PE. Comparison of secreted proteins by mass spectrometry allowed us to identify 21 proteins which were significantly differentially secreted by control and PE CTB. One protein has been detected exclusively in supernatant of control CTB and was identified as factor XIII chain A. To determine if this observation is due to a difference of protein secretion or gene expression, its mRNA was quantified in all CTB. We found that it was significantly decreased in PE CTB compared to control. Collectively, these data suggest that decrease of factor XIII chain A might be associated with development of PE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号