首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic extracts of mouse Taper ascites cells were centrifuged on sucrose gradients to give 0–80 S, monosome, and polysome fractions. CsCl equilibrium density centrifugation of formaldehyde-fixed material from the 0–80 S fraction demonstrated that the messenger RNA in the 0–80 S fraction was in the form of free ribonucleoprotein. The size of the poly(A+)RNA and the size of the poly(A) segments of these molecules were shown to be very similar in both the free mRNP2 and polysome fractions. The labeling kinetics of the free mRNP poly(A+)RNA was similar to that of the polysomal poly(A+)RNA.The free mRNP poly(A+)RNA efficiently stimulated protein synthesis in the wheat germ cell-free system, supporting the view that it was mRNA. Two-dimensional gel electrophoresis was used to analyze the proteins whose synthesis was directed by free mRNP and polysomal poly(A+)RNA. The free mRNP poly(A+)RNA directed the synthesis of a simpler set of abundant protein products than did the polysomal poly(A+)RNA. Most of the free mRNP abundant protein products were also present in the polysomal products, though obvious quantitative differences were evident, indicating that each individual mRNA had its own characteristic distribution between polysomes and the translationally inactive RNP form.  相似文献   

2.
The poly(A+)RNA of the free mRNP of mouse Taper ascites cell contains a very reduced number of different mRNA sequences compared to the polysome poly(A+)RNA. By the technique of mRNA:cDNA hybridization we have determined that the free mRNP contains approximately 400 different mRNA sequences while the polysomes contain about 9000 different mRNAs. The free mRNP poly(A+)RNA sequences are present in two abundance classes, the abundant free mRNP class containing 15 different mRNA sequences and the less abundant free mRNP class containing 400 different mRNAs. The polysome poly(A+)RNA consists of three abundance classes of 25, 500 and 8500 different mRNA sequences.Despite its intracellular location in RNP structures not directly involved in protein synthesis the poly(A+)RNA purified from the free RNP of these cells was a very effective template for protein synthesis in cell-free systems. Cell-free translation products of free mRNP and polysome poly(A+)RNAs were analyzed by two-dimensional gel electrophoresis. This analysis confirmed the hybridization result that the free mRNP poly(A+)RNA contained fewer sequences than polysomal poly(A+)RNA. The abundant free RNP-mRNA directed protein products were a subset of the polysome mRNA-directed protein products. The numbers of more abundant products of cell-free protein synthesis directed by the free RNP-mRNA and polysomal mRNA were in general agreement with the hybridization estimates of the number of sequences in the abundant classes of these two mRNA populations.  相似文献   

3.
The cytoplasmic non-polysomal poly(A+)mRNA found in the free messenger ribonucleoprotein of mouse Taper ascites cells was demonstrated by nucleic acid hybridization to contain only about 400 different mRNA sequences, in contrast to the greater than the 8000 sequences of the total cytoplasm. Approximately 50% by mass of the free RNP3-mRNA was shown to consist of only 15 different mRNA sequences and the other 50% to represent 400 different mRNA sequences. The abundant free mRNP sequences were also present in the polysomes at one-tenth of their concentration in the free mRNP. The 400 less abundant free RNP-mRNAs were found to be in the middle abundant class of total cytoplasmic sequences. The 400 less abundant free RNP-mRNA sequences were also found on the polysomes: 50% of these sequences were at similar concentrations in the polysomes as in the free mRNP, while 50% were found in the polysomes at reduced concentrations. Thus it is concluded that these mouse tumor cells maintain a highly polarized distribution of certain subsets of mRNA species between the functioning (polysomes) and non-functioning (free mRNP) compartments of the cytoplasm.  相似文献   

4.
Isolated rat liver nuclei were washed with Triton-X-100 in the presence of liver cell sap. This treatment liberated a fraction of polysomes which were isolated by differential centrifugation and were designated "outer membrane polysomes." The outer membrane polysomes synthesized protein in vivo. Shortly after injection of orotic acid-14C, the RNA of outer membrane polysomes had a higher specific activity than that of cytoplasmic polysomes. It was postulated that outer membrane polysomes may be an intermediate in the transfer of newly synthesized RNA from the nucleus to the cytoplasm. In other experiments, Triton-washed rat liver nuclei were lysed in the presence of deoxycholate and deoxyribonuclease. A ribonucleoprotein fraction was isolated from the lysate by differential centrifugation. This fraction contained "intranuclear ribosomes," which sedimented like partially degraded polysomes in sucrose gradients. This degradation could be partially prevented if intranuclear ribosomes were purified by sedimentation through heavy sucrose. The resulting pellets were termed "intranuclear polysomes" because they contained some undergraded polysomes. Intranuclear polysomes were highly radioactive after a brief pulse with orotic acid-14C, but did not appear to synthesize protein rapidly in vivo. Intranuclear polysomes may represent the initial stage of assembly of polyribosomes in the nucleus.  相似文献   

5.
Messenger ribonucleoprotein particles in developing sea urchin embryos   总被引:4,自引:0,他引:4  
Messenger RNA entering polysomes during early development of the sea urchin embryo consists of both oogenetic and newly transcribed sequences. Newly transcribed mRNA enters polysomes rapidly while oogenetic mRNA enters polysomes from a pool of stable, nontranslatable messenger ribonucleoprotein particles (mRNPs) derived from the unfertilized egg. Protein content may relate to differences in the regulation of newly transcribed and oogenetic mRNAs. Oogenetic poly(A)+ mRNA was found to be present in both polysomal and subpolysomal fractions of cleavage stage and early blastula stage embryos. This mRNA was found to be present in subpolysomal mRNPs with a density of 1.45 g/cm3 in Cs2SO4. Poly(A)+ mRNPs released from polysomes of embryos cultured in the presence of actinomycin D sedimented in a broad peak centered at 55 S and contained RNA of 21 S. The density of these particles was sensitive to the method of release; puromycin-released mRNPs had a density of 1.45 g/cm3, while EDTA caused a shift in density to 1.55 g/cm3, indicating a partial loss of protein. The results with newly synthesized mRNAs contrast sharply. Newly transcribed mRNA in subpolysomal mRNPs had a density of 1.55–1.66 g/cm3, a density approaching that of deproteinized RNA. Messenger RNA released from polysomes either by EDTA or puromycin was examined to determine the possible existence of polysomal mRNPs. When [3H]uridine-labeled mRNA was released from late cleavage stage embryo polysomes by either technique, and centrifuged on sucrose gradients, two broad peaks were found. One peak centered at 30 S contained 21 S mRNA while the other at 15 S contained 9 S histone mRNA. When these fractions were fixed with formaldehyde, they banded on Cs2SO4 gradients at a density of 1.60–1.66 g/cm3, very similar to that of pure RNA. We conclude that the newly transcribed mRNA may be present in stable mRNPs containing up to 10% protein in either subpolysomal or polysomal fractions. These mRNPs are clearly distinguishable from the protein-rich mRNPs containing oogenetic mRNAs.  相似文献   

6.
A single, major 21 S messenger ribonucleoprotein (mRNP complex) was isolated and purified by sucrose gradient centrifugation after EDTA treatment of high salt washed polysomes from 15 day embryonic chick lenses. A 17 S mRNA was released from the 21 S mRNP. The 21 S mRNP complex coded for a 50 000 molecular weight protein identical to the subunit of delta crystallin. Similar results were obtained with the 17 S mRNA released from the 21 S mRNP complex.  相似文献   

7.
8.
Cytoplasmic processing events in the poly(A) region of mRNA fromPhysarum polycephalum are reviewed. Two classes of poly-containing RNA [poly(A)+ RNA] exist in the cytoplasm. One contains very short poly(A) sequences, averaging about 15 adenylate residues, while the other contains relatively long poly(A) sequences, averaging about 60 residues. Molecules with short poly(A) sequences are found exclusively in the polysomes while those with long poly(A) sequences are restricted to the free cytoplasmic mRNP. Since proteins are associated with only the long poly(A) sequences the poly(A) · protein complex is also restricted to the free mRNP. The long poly(A) sequences are relatively short-lived. They are degraded by two distinct processes, a shortening process in which 15–20 residues are gradually removed and a turnover process in which long poly(A) tracts are rapidly converted to the short sequences. This process, along with the dissociation of the poly(A) · protein complex, occurs when poly(A)+ RNA molecules located in free mRNP are transferred to the polysomes. Poly(A) · protein complex dissociation appears to preceed poly(A) turnover during translational selection. The significance of these processing events in relation to mRNA maturation is discussed.  相似文献   

9.
Messenger RNA transport from isolated nuclei requires a 35×103 dalton cytoplasmic protein(s) which is present in both the cytosol and polyribosome fractions. Recombinant DNA probes containing cDNA inserts were used to quantitate the transport of rat liver-specific albumin and male rat liver-specific 2U-globulin messenger RNA (mRNA) from male rat liver nuclei in response to the mRNA transport factors from homologous and heterologous tissues. No mRNA transport occurs in the absence of the transport factor(s). Both messengers are transported proportionately in response to the factor(s) from male or female rat liver cytosol, or from the polyribosomes (messenger ribonucleoprotein) of male or female rat liver, or brain. The transport factor(s) do not, therefore, appear to differentiate between the coding sequences of two unrelated hepatic messenger RNA's.  相似文献   

10.
A cytoplasmic 10S ribonucleoprotein particle (iRNP), which is isolated from chick embryonic muscle, is a potent inhibitor of mRNA translation in vitro and contains a 4S translation inhibitory RNA species (iRNA). The iRNP particle shows similarity in size to the small nuclear ribonucleoprotein (snRNP) particles. Certain autoimmune disease patients contain antibodies directed against snRNP antigenic determinants. The possibility that iRNP may be related to the small nuclear particles was tested by immunoreactivity with monospecific autoimmune antibodies to six antigenic determinants (Sm, RNP, PM-1, SS-A (Ro), SS-B (La), and Scl-70). By Ouchterlony immunodiffusion assays, the cytoplasmic 10S iRNP did not show any immunoreactivity. Also, a more sensitive hemagglutination inhibition assay for detecting Sm and RNP antigens failed to show reactivity with the 10S iRNP. Thus, the 10S iRNP particles are distinct from the similarly sized snRNP. However, free and polysomal messenger ribonucleoprotein (mRNP) particles and polysomes also isolated from chick embryonic muscle and analyzed by Ouchterlony immunodiffusion and hemagglutination inhibition for the presence of the antigenic determinants showed reactivity to Sm and RNP autoantibodies, but were not antigenic for the other four antibodies. Some of the Sm antigenic peptides of mRNP particles and polysomes were identical to those purified from calf thymus nuclear extract, as judged by Western blot analysis. The association of Sm with free and polysomal mRNP and polysomes suggests that Sm may be involved in some cytoplasmic aspects of mRNA metabolism, in addition to a nuclear function in mRNA processing.  相似文献   

11.
We have studied the induction of helical polysomes by aflatoxin B1 in liver and kidney cells from rat and mouse. We succeeded in giving to reticulocyte polysomes a shape resembling helices after in vitro treatment with O-methylthreonine which is used as an inhibitor of polypeptide chain termination. From this and knowing the site of action of aflatoxin B1 on rat liver polysomes, we hypothesize that the induction of helical polysomes in tissues from adult animals treated by chemicals or carcinogens is due to the inhibition of release of ribosomes from the messenger RNA (mRNA). Theoretical studies of protein synthesis inhibition are in agreement with this new hypothesis.  相似文献   

12.
Mouse globin messenger ribonucleoprotein (mRNP) has been isolated from reticulocyte polysomes by affinity chromatography to oligo(T)-cellulose, using a procedure modified from that of Lindberg and Sundquist. The messenger RNA and protein moieties fo the mRNP are indistinguishable from those isolated by less rapid techniques, such as zonal ultracentrifugation.  相似文献   

13.
The hypothesis that the “masked message” of unfertilized eggs consists of nontranslatable mRNP particles was directly tested by in vitro translation of mRNPs in a system derived from wheat germ. Three classes of mRNPs were tested: particles prepared from sea urchin eggs in buffers containing 0.35 M K+, particles prepared from sea urchin eggs in 0.35 M Na+, and particles released with EDTA in 0.35 M K+ from polysomes of sea urchin embryos cultured in the presence of actinomycin D. The mRNA content of particles was monitored by determination of poly(A) content. The wheat germ system used is quantitatively stimulated by addition of mRNA derived from eggs or from any of the classes of mRNPs used. Particles prepared from eggs with Na+ or released from polysomes contain less protein than particles isolated from eggs in K+, and as expected these particles are fully translatable in vitro. Particles prepared from eggs in buffers containing 0.35 M K+ produce little or no stimulation in the in vitro system. That this lack of translation represents in vivo masking is indicated by several considerations: (1) The nontranslatable particles were prepared in 0.35 M K+ and 5 mM Mg2+, ion concentrations similar to those found in echinoderm eggs; (2) density and sedimentation rate characteristics of the particles are little changed by isolation; (3) RNA extracted from isolated particles is fully translatable; and (4) particles prepared from polysomes or under conditions which destabilize RNPs are translatable. These data support the masking hypothesis for the protein synthesis repression system of eggs.  相似文献   

14.
The distribution of messenger RNA between polysomes and mRNP in oocytes and embryos of Drosophila melanogaster has been studied by in vitro translational analysis. Poly(A)+ RNA was purified from polysomes or mRNA from mature oocytes and young embryos. The messenger populations were translated in vitro and the peptides synthesized were separated by two-dimensional electrophoresis. Analysis of the 2D gel patterns enabled the detection of three peptides coded by messengers present predominantly in the mRNA pools of mature oocytes. When DNA-binding peptides were selected from the in vitro translation products, they showed, after separation by two-dimensional electrophoresis, less than 100 spots. The analysis of the 2D gels indicated that three DNA-binding peptides are coded by messengers present only in the mRNP of the oocytes. These messengers are later found in the polysomal fraction of embryos.  相似文献   

15.
Rabbit polyribosomal globin messenger RNA (mRNA) and messenger ribonucleoprotein (mRNP) were labelled at the 3′ poly(A) tail to high specific activity with T4 RNA ligase and [5′-32P]pCp without consequent loss of functional activity. Labelled message was translated in both micrococcal nuclease treated and untreated rabbit reticulocyte lysates, as shown by the formation of labelled polyribosomes. The utilisation of labelled messenger was abolished by T2 toxin or sodium fluoride which are known to inhibit protein synthesis.  相似文献   

16.
Photocrosslinking of proteins to maternal mRNA in Xenopus oocytes   总被引:2,自引:0,他引:2  
Ultraviolet irradiation was used to covalently crosslink poly(A) RNA and associated proteins in Xenopus oocytes and reticulocytes. Each cell type contained similar as well as unique crosslinked proteins. The somatic cells contained a single 78-kDa 3' poly(A) tract binding protein while oocyte poly(A), however, was bound by this protein and at least three additional proteins. Based on the mass of poly(A) RNA, oocytes in their earliest stages of growth contained crosslinked proteins that were generally more prevalent than in fully grown oocytes. An investigation of possible messenger RNA-specific proteins was undertaken by a series of RNA injection experiments. Two radiolabeled SP6-derived mRNAs were injected into oocytes; the first, globin mRNA, assembled into polysomes, while the second, a maternal mRNA termed G10, entered a nontranslating ribonucleoprotein compartment. Following the induction of oocyte maturation, additional globin mRNA was recruited onto polysomes while G10 mRNA remained a nontranslating mRNP. The proteins that can be crosslinked to these injected mRNAs were detected by 32P nucleotide transfer. Each mRNA associated with shared as well as unique proteins, some of which were detected only in mature oocytes. The possible function of these proteins is discussed.  相似文献   

17.
18.
Two populations of free messenger ribonucleoprotein (mRNP) particles, sedimenting at 20 S and 40 S respectively, were isolated from a rat liver postpolysomal supernatant. After treatment with 0.5 M KCl and recentrifugation through a sucrose layer, the mRNP particles were characterized with respect to their low-molecular-weight RNA and protein components. 40-S and 20-S particles show very different RNA patterns. Four distinct low-molecular-weight RNA species of approximately 105, 139, 187 and 256 nucleotides were found as components of the 40-S mRNPs. The 20-S mRNP particles contain one major low-Mr RNA species of approximately 243 nucleotides and a characteristic pattern of low-Mr RNAs similar to the one found in nuclear ribonucleoprotein particles. In contrast to the low-Mr RNAs found in nuclear RNP particles most of the low-Mr RNA species present in 20-S and 40-S mRNP particles are rapidly labeled after [3H]orotate administration. Whereas the low-Mr RNA composition of 20-S and 40-S mRNP particles is very different, the protein patterns of both mRNP complexes are very similar. Six major polypeptides with the following molecular weights of 117000, 79800, 76700, 53800, 43900, 36300 and several minor ones were found in both 20-S and 40-S mRNPs. In a cell-free system from wheat germs neither 20-S nor 40-S mRNP particles stimulated the incorporation of [3H]leucine into proteins. However, phenol-extracted RNA from 20-S and 40-S mRNPs stimulated total protein synthesis 16-fold and 3-fold, respectively. Furthermore, the RNA from both mRNP pools directed the synthesis of albumin in vitro.  相似文献   

19.
20.
Translational control of ferritin synthesis was studied in rat spleen, and compared with that for liver, heart and brain, in response to iron and inflammation. Spleen concentrations of total RNA in the ribonucleoprotein (mRNP) fraction was comparable to that for liver, while polyribosomal RNA was less. Both fractions were ten-fold lower in heart and brain. In untreated animals, the mRNP fraction of all tissues had the largest portion of the ferritin mRNA, as determined by slot blot hybridization with 32P-labeled cDNA for the L subunit. Acute treatment with ferric ammonium citrate shifted the spleen ferritin mRNA to the polyribosome fraction. This was also so in liver but not in the heart and brain which took up much less iron. The findings were confirmed by hybridization studies of mRNPs and polyribosomes separated in sucrose gradients. Turpentine-induced inflammation also caused a shift in ferritin mRNA from the mRNP to the polyribosome fraction of spleen and liver, over 12 h. We conclude that as in liver, spleen ferritin synthesis is under translational control by iron, and that both tissues also respond to inflammation by shifting of ferritin mRNA to the polyribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号