共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuñez-Valdez M Sánchez J Lina L Güereca L Bravo A 《Biochimica et biophysica acta》2001,1546(1):122-131
The crystal insecticidal proteins from Bacillus thuringiensis are modular proteins comprised of three domains connected by single linkers. Domain I is a seven alpha-helix bundle, which has been involved in membrane insertion and pore formation activity. Site-directed mutagenesis has contributed to identify regions that might play an important role in the structure of the pore-forming domain within the membrane. There are several evidences that support that the hairpin alpha4-alpha5 inserts into the membrane in an antiparallel manner, while other helices lie on the membrane surface. We hypothesized that highly conserved residues of alpha5 could play an important role in toxin insertion, oligomerization and/or pore formation. A total of 15 Cry1Ab mutants located in six conserved residues of Cry1Ab, Y153, Y161, H168, R173, W182 and G183, were isolated. Eleven mutants were located within helix alpha5, one mutant was located in the loop alpha4-alpha5 and three mutants, W182P, W182I and G183C, were located in the loop alpha5-alpha6. Their effect on binding, K(+) permeability and toxicity against Manduca sexta larvae was analyzed and compared. The results provide direct evidence that some residues located within alpha5 have an important role in stability of the toxin within the insect gut, while some others also have an important role in pore formation. The results also provide evidence that conserved residues within helix alpha5 are not involved in oligomer formation since mutations in these residues are able to make pores in vitro. 相似文献
2.
Bacillus thuringiensis protein delta-endotoxins are toxic to a variety of different insect species. Larvicidal potency depends on the completion of a number of steps in the mode of action of the toxin. Here, we investigated the role of proteolytic processing in determining the potency of the B. thuringiensis Cry1Ac delta-endotoxin towards Pieris brassicae (family: Pieridae) and Mamestra brassicae (family: Noctuidae). In bioassays, Cry1Ac was over 2,000 times more active against P. brassicae than against M. brassicae larvae. Using gut juice purified from both insects, we processed Cry1Ac to soluble forms that had the same N terminus and the same apparent molecular weight. However, extended proteolysis of Cry1Ac in vitro with proteases from both insects resulted in the formation of an insoluble aggregate. With proteases from P. brassicae, the Cry1Ac-susceptible insect, Cry1Ac was processed to an insoluble product with a molecular mass of approximately 56 kDa, whereas proteases from M. brassicae, the non-susceptible insect, generated products with molecular masses of approximately 58, approximately 40, and approximately 20 kDa. N-terminal sequencing of the insoluble products revealed that both insects cleaved Cry1Ac within domain I, but M. brassicae proteases also cleaved the toxin at Arg423 in domain II. A similar pattern of processing was observed in vivo. When Arg423 was replaced with Gln or Ser, the resulting mutant toxins resisted degradation by M. brassicae proteases. However, this mutation had little effect on toxicity to M. brassicae. Differential processing of membrane-bound Cry1Ac was also observed in qualitative binding experiments performed with brush border membrane vesicles from the two insects and in midguts isolated from toxin-treated insects. 相似文献
3.
Padilla C Pardo-López L de la Riva G Gómez I Sánchez J Hernandez G Nuñez ME Carey MP Dean DH Alzate O Soberón M Bravo A 《Applied and environmental microbiology》2006,72(1):901-907
Bacillus thuringiensis produces insecticidal proteins (Cry protoxins) during the sporulation phase as parasporal crystals. During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins which form ionic pores. The structural changes of Cry toxins during oligomerization and insertion into the membrane are still unknown. The Cry1Ab toxin has nine tryptophan residues; seven are located in domain I, the pore-forming domain, and two are located in domain II, which is involved in receptor recognition. Eight Trp residues are highly conserved within the whole family of three-domain Cry proteins, suggesting an essential role for these residues in the structural folding and function of the toxin. In this work, we analyzed the role of Trp residues in the structure and function of Cry1Ab toxin. We replaced the Trp residues with phenylalanine or cysteine using site-directed mutagenesis. Our results show that W65 and W316 are important for insecticidal activity of the toxin since their replacement by Phe reduced the toxicity against Manduca sexta. The presence of hydrophobic residue is important at positions 117, 219, 226, and 455 since replacement by Cys affected either the crystal formation or the insecticidal activity of the toxin in contrast to replacement by Phe in these positions. Additionally, some mutants in positions 219, 316, and 455 were also affected in binding to brush border membrane vesicles (BBMV). This is the first report that studies the role of Trp residues in the activity of Cry toxins. 相似文献
4.
Role of Tryptophan Residues in Toxicity of Cry1Ab Toxin from Bacillus thuringiensis 总被引:1,自引:0,他引:1
下载免费PDF全文

Cristopher Padilla Liliana Pardo-Lpez Gustavo de la Riva Isabel Gmez Jorge Snchez Georgina Hernandez Maria Eugenia Nuez Marianne P. Carey Donald H. Dean Oscar Alzate Mario Sobern Alejandra Bravo 《Applied microbiology》2006,72(1):901-907
Bacillus thuringiensis produces insecticidal proteins (Cry protoxins) during the sporulation phase as parasporal crystals. During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins which form ionic pores. The structural changes of Cry toxins during oligomerization and insertion into the membrane are still unknown. The Cry1Ab toxin has nine tryptophan residues; seven are located in domain I, the pore-forming domain, and two are located in domain II, which is involved in receptor recognition. Eight Trp residues are highly conserved within the whole family of three-domain Cry proteins, suggesting an essential role for these residues in the structural folding and function of the toxin. In this work, we analyzed the role of Trp residues in the structure and function of Cry1Ab toxin. We replaced the Trp residues with phenylalanine or cysteine using site-directed mutagenesis. Our results show that W65 and W316 are important for insecticidal activity of the toxin since their replacement by Phe reduced the toxicity against Manduca sexta. The presence of hydrophobic residue is important at positions 117, 219, 226, and 455 since replacement by Cys affected either the crystal formation or the insecticidal activity of the toxin in contrast to replacement by Phe in these positions. Additionally, some mutants in positions 219, 316, and 455 were also affected in binding to brush border membrane vesicles (BBMV). This is the first report that studies the role of Trp residues in the activity of Cry toxins. 相似文献
5.
Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. 总被引:2,自引:0,他引:2
S Naimov M Weemen-Hendriks S Dukiandjiev R A de Maagd 《Applied and environmental microbiology》2001,67(11):5328-5330
Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have increased activities against this insect species. 相似文献
6.
A Chandra P Ghosh A D Mandaokar A K Bera R P Sharma S Das P A Kumar 《FEBS letters》1999,458(2):175-179
Insecticidal proteins or delta-endotoxins of Bacillus thuringiensis are highly toxic to a wide range of agronomically important pests. The toxins are formed of three structural domains. The N-terminal domain is a bundle of eight alpha-helices and is implicated in pore formation in insect midgut epithelial membranes. All the delta-endotoxins share a common hydrophobic motif of eight amino acids in alpha-helix 7. A similar motif is also present in fragment B of diphtheria toxin (DT). Site-directed mutagenesis of Cry1Ac delta-endotoxin of B. thuringiensis was carried out to substitute its hydrophobic motif with that of DT fragment B. The mutant toxin was shown to be more toxic to the larvae of Helicoverpa armigera (cotton bollworm) than the wild-type toxin. Voltage clamp analysis with planar lipid bilayers revealed that the mutant toxin opens larger ion channels and induces higher levels of conductance than the wild-type toxin. 相似文献
7.
Bravo A Gómez I Conde J Muñoz-Garay C Sánchez J Miranda R Zhuang M Gill SS Soberón M 《Biochimica et biophysica acta》2004,1667(1):38-46
Bacillus thuringiensis Cry1A toxins, in contrast to other pore-forming toxins, bind two putative receptor molecules, aminopeptidase N (APN) and cadherin-like proteins. Here we show that Cry1Ab toxin binding to these two receptors depends on the toxins' oligomeric structure. Toxin monomeric structure binds to Bt-R1, a cadherin-like protein, that induces proteolytic processing and oligomerization of the toxin (Gomez, I., Sanchez, J., Miranda, R., Bravo A., Soberon, M., FEBS Lett. (2002) 513, 242-246), while the oligomeric structure binds APN, which drives the toxin into the detergent-resistant membrane (DRM) microdomains causing pore formation. Cleavage of APN by phospholipase C prevented the location of Cry1Ab oligomer and Bt-R1 in the DRM microdomains and also attenuates toxin insertion into membranes despite the presence of Bt-R1. Immunoprecipitation experiments demonstrated that initial Cry1Ab toxin binding to Bt-R1 is followed by binding to APN. Also, immunoprecipitation of Cry1Ab toxin-binding proteins using pure oligomeric or monomeric structures showed that APN was more efficiently detected in samples immunoprecipitated with the oligomeric structure, while Bt-R1 was preferentially detected in samples immunoprecipitated with the monomeric Cry1Ab. These data agrees with the 200-fold higher apparent affinity of the oligomer than that of the monomer to an APN enriched protein extract. Our data suggest that the two receptors interact sequentially with different structural species of the toxin leading to its efficient membrane insertion. 相似文献
8.
Production of chymotrypsin-resistant Bacillus thuringiensis Cry2Aa1 delta-endotoxin by protein engineering. 总被引:2,自引:0,他引:2
M Audtho A P Valaitis O Alzate D H Dean 《Applied and environmental microbiology》1999,65(10):4601-4605
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when (125)I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144. 相似文献
9.
10.
Vazquez-Padron RI de la Riva G Agüero G Silva Y Pham SM Soberón M Bravo A Aïtouche A 《FEBS letters》2004,570(1-3):30-36
Cry1Ab is one of the most studied insecticidal proteins produced by Bacillus thuringiensis during sporulation. Structurally, this protoxin has been divided in two domains: the N-terminal toxin core and the C-terminal portion. Although many studies have addressed the biochemical characteristics of the active toxin that corresponds to the N-terminal portion, there are just few reports studying the importance of the C-terminal part of the protoxin. Herein, we show that Cry1Ab protoxin has a unique natural cryptic endotoxic property that is evident when their halves are expressed individually. This toxic effect of the separate protoxin domains was found against its original host B. thuringiensis, as well as to two other bacteria, Escherichia coli and Agrobacterium tumefaciens. Interestingly, either the fusion of the C-terminal portion with the insecticidal domain-III or the whole N-terminal region reduced or neutralized such a toxic effect, while a non-Cry1A peptide such as maltose binding protein did not neutralize the toxic effect. Furthermore, the C-terminal domain, in addition to being essential for crystal formation and solubility, plays a crucial role in neutralizing the toxicity caused by a separate expression of the insecticidal domain much like a dot/anti-dot system. 相似文献
11.
《Biochemical Systematics and Ecology》2005,33(3):219-232
The application of Bacillus thuringiensis (Bt) and the growing of genetically-modified crops are currently practised to control infestations of crop-eating insects. The increasing use of these biopesticides could lead to an increase in Cry1Ab endotoxin in both terrestrial and aquatic environments. The aim of this study was to quantify levels of Cry1Ab endotoxin and locate its source in the environment. Agricultural soils and surface waters were spiked with crystals (biopesticide-Dipel®) or with pure Bt-corn endotoxin. Cry1Ab concentrations were then determined with immunoassays. Additionally, surface water, soils and sediments were sampled in an area sprayed with Bt kurstaki and at a site where genetically-modified corn expressing Cry1Ab is grown. Isotopic analysis was performed on the endotoxin from Bt and Bt corn to characterize the proportions of 13C/12C and 15N/14N. The results showed that Bt-corn endotoxin is degraded more rapidly in water than in soils (t1/2: 4 and 9 days, respectively), while crystals appeared to be more resilient, as expected. The isotopic patterns of 13C and 15N in Bt-corn endotoxin differed markedly from Bt, making it possible to track the source of Cry1Ab in the environment. Preliminary field surveys indicate that Cry1Ab is fairly uncommon in aquatic environments, being found only at trace concentrations when it is detected. 相似文献
12.
The Cry1Ab δ-endotoxin V171C mutant protein exhibits a 25-fold increase in toxicity against Lymantria dispar, which correlates with a faster rate of partitioning into the midgut membrane and slightly decreased protein stability. This is an insect-specific mechanism; similar results were not observed in Manduca sexta, another Cry1Ab δ-endotoxin-susceptible insect. 相似文献
13.
The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin 总被引:1,自引:0,他引:1
Lee MK Walters FS Hart H Palekar N Chen JS 《Applied and environmental microbiology》2003,69(8):4648-4657
The Vip3A protein, secreted by Bacillus spp. during the vegetative stage of growth, represents a new family of insecticidal proteins. In our investigation of the mode of action of Vip3A, the 88-kDa Vip3A full-length toxin (Vip3A-F) was proteolytically activated to an approximately 62-kDa core toxin either by trypsin (Vip3A-T) or lepidopteran gut juice extracts (Vip3A-G). Biotinylated Vip3A-G demonstrated competitive binding to lepidopteran midgut brush border membrane vesicles (BBMV). Furthermore, in ligand blotting experiments with BBMV from the tobacco hornworm, Manduca sexta (Linnaeus), activated Cry1Ab bound to 120-kDa aminopeptidase N (APN)-like and 250-kDa cadherin-like molecules, whereas Vip3A-G bound to 80-kDa and 100-kDa molecules which are distinct from the known Cry1Ab receptors. In addition, separate blotting experiments with Vip3A-G did not show binding to isolated Cry1A receptors, such as M. sexta APN protein, or a cadherin Cry1Ab ecto-binding domain. In voltage clamping assays with dissected midgut from the susceptible insect, M. sexta, Vip3A-G clearly formed pores, whereas Vip3A-F was incapable of pore formation. In the same assay, Vip3A-G was incapable of forming pores with larvae of the nonsusceptible insect, monarch butterfly, Danaus plexippus (Linnaeus). In planar lipid bilayers, both Vip3A-G and Vip3A-T formed stable ion channels in the absence of any receptors, supporting pore formation as an inherent property of Vip3A. Both Cry1Ab and Vip3A channels were voltage independent and highly cation selective; however, they differed considerably in their principal conductance state and cation specificity. The mode of action of Vip3A supports its use as a novel insecticidal agent. 相似文献
14.
Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac 总被引:1,自引:0,他引:1
Sayyed AH Gatsi R Ibiza-Palacios MS Escriche B Wright DJ Crickmore N 《Applied and environmental microbiology》2005,71(11):6863-6869
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies. 相似文献
15.
Aim: To select a toxin combination for the management of maize stem borer (Chilo partellus) and to understand possible mechanism of synergism among Bacillus thuringiensis Cry1A toxins tested. Methods and Results: Three Cry1A toxins were over expressed in Escherichia coli strain JM105 and used for diet overlay insect bioassay against C. partellus neonate larvae, both alone and in combinations. Probit analysis revealed that the three Cry1A toxins tested have synergistic effect against C. partellus larvae. In vitro binding analysis of fluorescein isothiocyanate (FITC)‐labelled Cry1A toxins to midgut brush border membrane vesicle (BBMV) shows that increase in toxicity is directly correlated to an increase in binding of toxin mix. Conclusions: A high Cry1Ac to Cry1Ab ratio leads to an increase in efficacy of these toxins towards C. partellus larvae and this increase in toxicity comes from an increase in toxin binding. Significance and Impact of the Study: Use of Cry1Ab and Cry1Ac combination could be an effective approach to control C. partellus. Furthermore, we show it first time that possible reason behind increase in toxicity of synergistic Cry1A proteins is an increase in toxin binding. 相似文献
16.
Common, but Complex, Mode of Resistance of Plutella xylostella to Bacillus thuringiensis Toxins Cry1Ab and Cry1Ac
下载免费PDF全文

Ali H. Sayyed Roxani Gatsi M. Sales Ibiza-Palacios Baltasar Escriche Denis J. Wright Neil Crickmore 《Applied microbiology》2005,71(11):6863-6869
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies. 相似文献
17.
Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens 总被引:1,自引:0,他引:1
The 14kDa (Cry34Ab1) and 44kDa (Cry35Ab1) binary insecticidal proteins are produced naturally by Bacillus thuringiensis PS149B1 as parasporal inclusion bodies. Here, we show production of these two insecticidal proteins in recombinant Pseudomonas fluorescens and their subsequent purification to near homogeneity to provide large quantities of protein for safety-assessment studies associated with the registration of transgenic corn plants. The gene sequence specific for each protein was expressed in P. fluorescens and fermented at the 75-L scale. For Cry34Ab1, the protein accumulated as insoluble inclusion bodies, and was purified by extraction directly from the cell pastes at pH 3.4 with a sodium acetate buffer, selective precipitation at pH 7.0, and differential centrifugation. For Cry35Ab1, the protein was extracted from the purified inclusion bodies with sodium acetate buffer (pH 3.5) containing 0.5M urea, followed by diafiltration. No chromatography steps were required to produce over 30g of lyophilized protein powder with purity greater than 98%, while retaining full insecticidal activity against Western corn rootworm larvae. The proteins were further characterized to assure identity and suitability for use in safety-assessment studies. 相似文献
18.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices 1 and 2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the 1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway. 相似文献
19.
Wendy Kain Xiaozhao Song Alida F. Janmaat Jian-Zhou Zhao Judith Myers Anthony M. Shelton Ping Wang 《Applied and environmental microbiology》2015,81(5):1884-1890
Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops. 相似文献