首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A central composition design was developed to study the influence of process variables (temperature, pulping time and ethanol concentration) on the properties of the pulp produced (yield and holocellulose, alpha-cellulose and lignin contents) and the pH of the resulting wastewater, in the ethanol pulping of olive tree trimmings. The proposed equations reproduce the experimental results for the dependent variables with errors less than 5% for the holocellulose and alpha-cellulose contents, yield and wastewater pH, and less than 15% for the lignin content. Obtaining pulp with acceptably high yield (37.6%), high holocellulose and alpha-cellulose contents (above 88.8% and 46.9%, respectively), and low lignin contents (below 7.2%), entails operating at a pulping temperature of 200 degrees C, using an ethanol concentration of 75% and a pulping time of 60 min.  相似文献   

2.
Influence of dimethyl formamide pulping of bagasse on pulp properties   总被引:1,自引:0,他引:1  
Organosolv pulping of bagasse was conducted following a central composite design using a two-level factorial plan involving three pulping variables (temperature: 190-210 degrees C, time: 120-180 min, organic solvent charge: 40-60% dimethyl formamide). Responses of pulp properties (yield and holocellulose, alpha-cellulose, kappa number, ash and ethanol-dichloromethane extractives contents) and the pH of the resulting wastewater to the process variables were analyzed using statistical software (MINITAB). Main factor analysis revealed that optimum pulp has the following characteristics: 82.7% (yield), 92.9 (kappa number), 95.84% (holocellulose), 83.53% (alpha-cellulose), 1.403% (ash), 2.562% (ethanol-dichloromethane extractives contents) and 6.39 (pH). These results showed that acceptable properties of pulps could be gained at 200-210 degrees C for 150 min and 40-60% DMF. Based on these results, this method could be used for pulping of bagasse equivalent NSSC concerning high yield at a fixed kappa number. In addition, bagasse could be pulped with ease to approximately 55% yield with a kappa number approximately 31. Numerical analyses showed that cooking temperature had the greatest influence on properties of obtained pulps within the DMF concentrations and cooking time as cooking variables.  相似文献   

3.
The pulping of wheat straw with dimethyl formamide was studied in order to investigate the effects of the cooking variables (temperature (190 degrees C, 200 degrees C, and 210 degrees C) and time (120 min, 150 min, and 180 min) and organic solvent ratio (30%, 50%, and 70%) dimethyl formamide (DMF+water) value) on the degradation of cellulose and degree of polymerization (DP) of organosolv pulp. The SCAN viscosity was applied to estimating the extent of cellulose degradation produced by cooking condition and then, it was compared with Kraft pulp at equal Kappa number. Response of pulp and handsheets properties to the process variables were analyzed using statistical software (MINITAB 14). The process variables (cooking temperature and cooking time) must be set at low variables with high DMF ratio in order to ensure a high yield and high SCAN viscosity. Also, pulps with high mechanical properties can be acceptably obtained at 210 degrees C for 150 min with 50% DMF. Generally, the cooking temperature was a significant factor while the cooking time and DMF ratio had a smaller role. By the comparison of Kraft and organosolv pulp, it can be resulted that DMF basically had improvement role on reducing of cellulose degradation by reason of high SCAN viscosity of organosolv pulp than Kraft pulp under equal kappa number and, scanning electron microscopy (SEM) of obtained pulp. Consequently, the protective action of organic solvent on non-cellulosic polysaccharides of wheat straw against degradation under Kraft pulping conditions was pointed as a main reason of the fairly high yield of organosolv pulps.  相似文献   

4.
Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).  相似文献   

5.
In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).  相似文献   

6.
Pan X  Sano Y 《Bioresource technology》2005,96(11):1256-1263
Fractionation of wheat straw was investigated using an atmospheric acetic acid process. Under the typical conditions of 90% (v/v) aqueous AcOH, 4% H(2)SO(4) (w/w, on straw), ratio of liquor to straw (L/S) 10 (v/w), pulping temperature 105 degrees C, and pulping time 3h, wheat straw was fractionated to pulp (cellulose), lignin and monosaccharides mainly from hemicellulose with yields of approximately 50%, 15% and 35%, respectively. Acetic acid pulp from the straw had an acceptable strength for paper and could be bleached to a high brightness over 85% with a short bleaching sequence. Acetic acid pulp was also a potential feedstock for fuels and chemicals. The acetic acid process separated pentose and hexose in wheat straw to a large extent. Most of the pentose (xylan) was dissolved, whereas the hexose (glucan) remained in the pulp. Approximately 30% of carbohydrates in wheat straw were hydrolyzed to monosaccharides during acetic acid pulping, of which xylose accounted for 70% and glucose for 12%. The acetic acid lignin from wheat straw showed relatively lower molecular weight and fusibility, which made the lignin a promising raw material for many products, such as adhesive and molded products.  相似文献   

7.
Seven wheat straw cellulose preparations were isolated by a two-stage acidic organosolv treatment followed by cyanamide activated hydrogen peroxide bleaching. The effects of concentration of acetic and formic acids on the yield of cellulose and degradation of lignin and non-cellulose polysaccharides were investigated. Organic acids were more effective than alcohols on the degradation of lignin and hemicelluloses. Formic acid/acetic acid/water (30/60/10, v/v/v) system was found to be the most effective in delignification and removal of non-cellulose polysaccharides from the straw and did not have any undesirable effects on cellulose properties such as its intrinsic viscosity. In this case, the treatment removed 94.1% of the original lignin and 76.5% of the original hemicelluloses using 0.1% HCl as a catalyst at 85 °C for 4 h. Cyanamide activated hydrogen peroxide bleaching degraded substantial amounts of residual hemicelluloses and lignin, produced the cellulose samples having a relatively high purity. Under a best condition, a cellulose relatively free of lignin (0.7%) and with intrinsic viscosity of 393 ml g−1 and favourable molar mass (213,940 g mol−1) was obtained. Both unbleached and bleached cellulose preparations were further characterised by FT-IR and CP/MAS 13C NMR spectroscopy, and thermal stability.  相似文献   

8.
Several fungi (Aspergillus niger, A. terreus, Cochliobolus specifer, Myrothecium verrucaria, Rhizoctonia solani, Spicaria fusispora, Penicillium sp., and Gliocladium sp.) were isolated from decomposing wheat straw and tested for their ability to utilize whole straw and its components, holocellulose (hemicellulose and cellulose) and cellulose, for the production of single-cell protein (SCP). It was found that C. specifer was the most efficient fungus for protein synthesis with the three substrates. Using potassium nitrate as N source in mixtures of 0.04 g N/g substrate (0.04% wt./vol.) at pH 4.5, it was found that incubation periods of 3, 4, and 5 days were optimal for protein production on cellulose and holocellulose fractions, and whole straw, respectively. Whole native straw was found to be the most recalcitrant to bioconversion into SCP; however, protein production was almost doubled when the lignin component was removed using a mixture of sodium chlorite and acetic acid.  相似文献   

9.
为探究不同秸秆还田模式对土壤碳库的影响,以陕西关中平原连续11年麦玉秸秆还田定位试验为基础,选择5种还田模式,即秸秆均不还田(CK)、小麦高留茬-玉米秸秆粉碎还田(WH-MC)、小麦玉米秸秆均粉碎还田(WC-MC)、小麦高留茬-玉米秸秆不还田(WH-MN)和小麦秸秆粉碎还田-玉米秸秆不还田(WC-MN),测定不同模式土壤有机碳(SOC)、活性碳组分和无机碳(SIC)在0~40 cm土层的分布。结果表明: 与CK相比,WH-MC和WC-MC的SOC储量分别增加28.1%和22.2%,SIC储量分别增加20.4%和17.3%;与试验初始土壤碳储量相比,各还田模式SOC固持量变化为-0.84~6.55 t·hm-2,SIC固持量为-0.26~8.61 t·hm-2;土壤总固碳效率为7.5%,维持土壤初始碳储量水平的最小碳投入量为4.65 t·hm-2·a-1;与CK相比,WH-MC和WC-MC显著提升0~20 cm土层活性碳组分含量。主成分分析表明,不同还田模式下土壤碳库变化主要受秸秆投入量的影响。来源于灌溉水和植物残体的Ca2+、Mg2+与SOC矿化产生的CO2可共沉淀形成CaCO3,可能是本研究SIC增加的主要机制。从提高土壤碳固持角度来看,小麦高留茬-玉米秸秆粉碎还田模式为最佳还田模式。  相似文献   

10.
This paper reports on the influence of independent variables in the pulping of holm oak wood (Quercus ilex L.) [viz. temperature (135-195 degrees C), cooking time (30-90min) and soda concentration (10-20%)] on the yield, holocellulose content, alpha-cellulose content, brightness and viscosity of the resulting pulp. By using a central composite factorial design, equations relating each dependent variable to the different independent variables were derived that reproduced the experimental results for the dependent variables with errors less than 5-15% in all cases. The highest pulp yield (56.9%) was obtained with the lowest values of the operating variables. However, obtaining the optimum holocellulose content, alpha-cellulose content and viscosity (viz. 94.5%, 78.5% and 1395ml/g, respectively) entailed using values of the independent variables above their mean levels. Also, ensuring optimal brightness (viz. 24.3%) required using higher temperatures and soda concentrations. A compromise that saves equipment immobilized capital and about 25% of soda is using a soda concentration of 15% at 195 degrees C for 30min. The yield thus obtained differs by less than 29.5% from the highest level; also, the resulting holocellulose content, alpha-cellulose content and brightness differ by less than 12% from their respective optimum values.  相似文献   

11.
Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195 degrees C with addition of 12 bar oxygen and 6.5 g l(-1) Na2CO3. At these conditions the hemicellulose fraction from 100 g straw consisted of soluble hemicellulose (16 g), low molecular weight carboxylic acids (11 g), monomeric phenols (0.48 g) and 2-furoic acid (0.01 g). Formic acid and acetic acid constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde. acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products from hemicellulose and lignin.  相似文献   

12.
通过在陕西杨凌进行的3年田间试验研究了减氮+秸秆还田以及添加双氰胺(DCD)对旱地雨养区冬小麦-夏休闲种植模式小麦产量和氮平衡的影响.试验共设置不施氮肥(CK)、施氮220 kg·hm-2+秸秆不还田(FP)、施氮150 kg·hm-2+秸秆还田(OPT)和施氮150 kg·hm-2+秸秆还田+7.5 kg·hm-2双氰胺(OPT+DCD)4个处理.结果表明:与FP相比,OPT处理产量略降低,但差异不显著,而氮肥利用率增加6.1%,氮肥表观损失率减小7.2%; OPT+DCD处理小麦产量和氮肥利用率均最高,且氮肥表观损失率最低,3年平均产量分别比OPT和FP高10.4%和7.9%,氮肥利用率高20.8%和28.1%,氮肥表观损失率减少8.5%和15.1%.施肥40~45 d内,添加DCD可以提高表层土壤NH4+-N的含量,减少NO3--N的累积.  相似文献   

13.
以一株耐热耐碱放线菌-绿色糖单孢菌(Saccharomonospora viridis)为研究对象,探讨其产胞外木素过氧化物酶、木聚糖酶、纤维素酶的优化发酵条件。结果表明,其最佳碳氮源分别为葡萄糖和蛋白胨,最佳接种量为1%,不同的诱导底物对三种木质纤维降解酶有不同的诱导效果,其中麦草浆的诱导效果最好。在培养基中添加0.01mol/L的Mn^2+和0.1%的土温80能够显著促进木质纤维降解酶的产生。在pH8.0,45℃条件下,培养120h后木素过氧化物酶的酶活达到最大0.36U/mL,培养156h后木聚糖酶和纤维素酶的酶活达到最大,最高酶活分别为18.46U/mL,10.42u/mL。用含有这三种酶的粗酶液对麦草烧碱蒽醌浆进行生物漂白表明,绿色糖单孢菌所产的木质纤维降解酶具有较好的漂白效果。  相似文献   

14.
林窗通过改变森林微环境及土壤环境而影响凋落物难降解物质的降解, 目前关于人工林林窗对凋落物分解过程中难降解物质影响的研究较少。该文采用凋落物分解袋法, 以马尾松(Pinus massoniana)人工林人工砍伐形成的7个不同面积的林窗(G1: 100 m2、G2: 225 m2、G3: 400 m2、G4: 625 m2、G5: 900 m2、G6: 1225 m2、G7: 1600 m2)为研究对象, 以林下为对照, 研究了林窗大小对两种乡土树种——樟(Cinnamomum camphora)和红椿(Toona ciliata)凋落叶分解过程中难降解物质(木质素、纤维素、总酚、缩合单宁)含量的影响。结果表明: 1)林窗大小对林窗中心红椿凋落叶缩合单宁、总酚、木质素的含量有显著影响, 对其纤维素含量和樟凋落叶中4种难降解物质含量均无显著影响。随着林窗面积的增大, 红椿凋落叶中除纤维素含量外的其余3种难降解物质含量, 中小型林窗(G1-G5, G1: 100 m2, G2: 225 m2, G3:400 m2, G4: 625 m2, G5: 900 m2)低于大型林窗(G6、G7, G6: 1225 m2, G7: 1600 m2)。2)林窗不同位置, 只有红椿凋落叶中缩合单宁含量林窗中心显著低于边缘, 其余难降解物质含量和樟凋落叶中4种难降解物质含量均无显著差异。樟凋落叶的木质素含量在G3林窗显著低于林下; 红椿凋落叶除纤维素含量外的其余难降解物质含量, 中小型林窗从林窗中心到边缘均显著低于林下。3)随着分解时间的延长, 两种凋落叶都表现出缩合单宁、纤维素含量降低, 木质素含量升高, 总酚含量先升高后降低的变化趋势。研究结果表明: 中小型林窗(100-900 m2)较大面积林窗干扰更有利于凋落叶中难降解物质的降解, 而林窗内的环境异质性应该是凋落物中难分解物质分解动态的主要调控因子, 并且这种效应依赖于初始凋落物质量。  相似文献   

15.
《植物生态学报》2015,39(8):785
Aims The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition at different forest gap size in Pinus massoniana plantation in the low hilly land, Sichuan basin. Methods The experiment was set up by thinning P. massoniana plantation to establish seven different gap sizes (G1: 100 m2, G2: 225 m2, G3: 400 m2, G4: 625 m2, G5: 900 m2, G6: 1225 m2, G7: 1600 m2). The contents of four recalcitrant components (condensed tannins, total phenol, lignin, cellulose) in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) placed in litterbags at different locations in the forest gaps were evaluated. The litterbags placed under closed canopy were used as the control. Litterbags with air-dried leaves of C. camphora and T. ciliata were placed at center, edge of the gap and under the closed canopy in November 2013, and collected in December 2013, February 2014, May 2014 and August of 2014 for lab analysis. Important findings The results showed that: 1) Forest gap size had significant effect on the content of condensed tannins, total phenol and lignin for T. ciliata in gap center. However, the forest gap size had no significant effect on the content of recalcitrant components in the litters of C. camphora and cellulose content of T. ciliata. With the increase of gap size, except for cellulose content, the other three recalcitrant components content in small and medium sized gaps (G1-G5) were significant lower than in large gaps (G6, G7). 2) The condensed tannis content of T. ciliata at the gap center were significant lower than at the gap edge. The lignin contents at gap center of G3 was significant reduced in the C. camphora litter. The condensed tannins, total phenol, and lignin contents of T. ciliata litter in small and medium gaps significantly decreased. 3) The contents of the four recalcitrant components in both species’ foliar litter changed with time. The contents of condensed tannins and cellulose decreased and the content of lignin increased significantly with time, however, the total phenol content increased initially, and then decreased. Therefore, small and medium sized gaps (100-900 m2) could be the optimal gap sizes to promote the degradation of litter recalcitrant components for two native species in P. massoniana plantations.  相似文献   

16.
The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H2SO4) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.  相似文献   

17.
The biological upgrading of wheat straw with Streptomyces cyaneus was examined through the analysis of chemical and structural changes of the transformed substrate during solid-state fermentation. Analysis of enzymes produced during the growth of S. cyaneus showed that phenol oxidase was the predominant enzyme. The reduction in Klason lignin content (16.4%) in the transformed substrate indicated the ability of this strain to delignify lignocellulose residues and suggests a role for phenol oxidase in the bacterial delignification process. Microscopic examination of the transformed substrate showed that the initial attack occurred at the less lignified cell walls (phloem and parenchyma), while xylem and sclerenchyma were slowly degraded. The pattern of degradation of sclerenchymatic tissues by S. cyaneus showed delamination between primary and secondary walls and between S1 and S2 due to partial removal of lignin. In the later stages of the decay a disorganization of the secondary walls was detected on account of fibrillation of this layer. A comparison of the properties of the pulp from wheat straw transformed by S. cyaneus with untreated wheat straw showed that pretreatment improved the characteristics that determine the quality of pulp. This was indicated by an increase in pulp brightness and by a decrease in the kappa number. These changes occurred without significantly affecting the viscosity, a measure of the quality of the cellulose fibres. These results support the potential application of this organism or its oxidative enzymes in biopulping. Received: 01 February 2000 / Received revision: 25 May 2000 / Accepted: 30 May 2000  相似文献   

18.
秸秆还田下施氮量对稻茬晚播小麦土壤氮素盈亏的影响   总被引:1,自引:1,他引:0  
在大田条件下,研究了不同施氮量对秸秆还田下晚播小麦土壤矿质氮含量变化、秸秆氮释放及小麦产量的影响.结果表明: 0~50 cm土层土壤矿质氮含量随着施氮量的增加而显著增加,随生育进程的推进,N270和N360处理下层土壤的矿质氮显著积累.秸秆氮素释放量随施氮量增加而增加,越冬至拔节期氮释放量最低,拔节至成熟期释放量占总释氮量的50%以上.全生育期施氮量超过180 kg·hm-2,土壤氮素开始出现显著的盈余,播种至拔节期氮素表观盈余量显著高于拔节至成熟期.籽粒产量在270 kg·hm-2施氮量下最高, 更高施氮量下氮素利用效率显著降低.施氮量为270 kg·hm-2时,有利于秸秆全量还田下晚播小麦兼顾产量和生态效益.  相似文献   

19.
通过设置在黄土高原黑垆土区的长期定位试验系统,研究了长期施肥条件下作物产量与土壤碳氮的互馈关系.试验设不施肥(CK)、单施氮肥(N)、氮磷配施(NP)、秸秆与氮磷配施(SNP)、施有机肥(M)和有机肥与氮磷配施(MNP)6个处理.结果表明: 与对照相比,长期平衡施用化肥、单施有机肥、化肥与有机肥配合施用和秸秆还田配施化肥显著增加了作物产量及其稳定性, NP、SNP、M、MNP处理玉米和小麦产量分别增加92%、97%、93%、141%和147%、164%、139%、214%.NP处理玉米和小麦年均产量与当地常规施肥作物产量相当且稳定,小麦-玉米轮作体系施肥量为N 90 kg·hm-2、P2O5 75 kg·hm-2能够满足作物需要.秸秆还田与隔年施磷相配合的SNP处理与NP处理作物产量相似,且可减少磷肥施用量50%.平衡施用化肥、有机肥、化肥与有机肥配施和秸秆还田配施化肥均可显著增加土壤有机碳含量,而施用化肥对土壤全氮含量影响不明显,综合所有处理,土壤有机碳和全氮含量呈显著正相关.不同处理土壤有机碳固存率在15%~41%.SNP处理土壤有机碳累积投入量增加1 t·hm-2,土壤有机碳含量增加0.06 g·kg-1,而CK、N、NP、M和MNP处理的增幅在0.12~0.15 g·kg-1.玉米和小麦产量都与土壤全氮含量呈显著正相关,玉米产量随土壤有机碳含量的增加而增加,但小麦产量随土壤有机碳含量的增加先快速增加后趋于平稳,拐点出现在6.8 g·kg-1.长期平衡施用化肥、有机肥、有机肥与化肥配合施用及秸秆还田配施化肥可显著增加黄土高原黑垆土土壤有机碳和全氮含量、作物产量和根茬还田量,根茬还田量的增加又进一步增加了土壤有机碳和全氮含量,形成了相互促进的互馈关系.  相似文献   

20.
森林可燃物是森林火灾发生的基础,地表死可燃物是森林可燃物的重要组成部分,研究地表死可燃物的热解特性和气体释放对探究森林火灾对大气环境和碳平衡的影响及森林火灾的预防和扑救具有重要意义.本研究对黑龙江省6种乔木(樟子松、红皮云杉、水曲柳、胡桃楸、蒙古栎和白桦)地表凋落的叶片进行热重分析和气体释放分析,探究森林可燃物的热解过...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号