首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultures of Chromatium strain D and Rhodospirillum rubrum incorporated 14C from phenylacetate-1-14C during anaerobic growth. The radioactivity in the protein fraction of cells was mainly in phenylalanine. Phenylalanine from Chromatium cells grown in phenylacetate-1-14C was labeled at carbon 2. Incorporation of phenylacetate by Chromatium was decreased in the presence of exogenous phenylalanine, and de novo synthesis of phenylalanine from bicarbonate was less in medium containing either phenylalanine or phenylacetate. These organisms, and also certain anaerobic rumen bacteria, apparently carboxylate phenylacetate to synthesize the phenylalanine carbon skeleton. The mechanism of the carboxylation is unknown; however, it appears to be dependent upon anaerobic conditions, since R. rubrum did not synthesize phenylalanine from phenylacetate during aerobic growth in the dark.  相似文献   

2.
High affinity uptake of choline, GABA, norepinephrine and serotonin into synaptosomes and ganglioside content of cortices served as indices of synaptic development. Both parameters indicated that phenylacetate contributed to the retarded maturation of synapses in the cerebrum of the adult rat, previously treated with either phenylacetate or one of its precursors, phenylalanine (with p-CPA) and phenylethylamine, during the first 21 days of life. In these groups of rats, which also exhibited a pronounced deficit in learning capacity, the velocity of high affinity synaptosomal uptake of choline was reduced to a greater extent than that of GABA, and there was a profound decrease in the ganglioside content of cerebral cortex. In contrast, synaptic maturation and behavior of control and phenylpyruvate treated animals were similar. These findings lend strong support to our contention that phenylacetate, produced in excessive amounts in PKU, is most likely a primary cause of the mental retardation.  相似文献   

3.
The anaerobic metabolism of phenylalanine was studied in the denitrifying bacterium Thauera aromatica, a member of the β-subclass of the Proteobacteria. Phenylalanine was completely oxidized and served as the sole source of cell carbon. Evidence is presented that degradation proceeds via benzoyl-CoA as the central aromatic intermediate; the aromatic ring-reducing enzyme benzoyl-CoA reductase was present in cells grown on phenylalanine. Intermediates in phenylalanine oxidation to benzoyl-CoA were phenylpyruvate, phenylacetaldehyde, phenylacetate, phenylacetyl-CoA, and phenylglyoxylate. The required enzymes were detected in extracts of cells grown with phenylalanine and nitrate. Oxidation of phenylalanine to benzoyl-CoA was catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, phenylacetaldehyde dehydrogenase (NAD+), phenylacetate-CoA ligase (AMP-forming), enzyme(s) oxidizing phenylacetyl-CoA to phenylglyoxylate with nitrate, and phenylglyoxylate:acceptor oxidoreductase. The capacity for phenylalanine oxidation to phenylacetate was induced during growth with phenylalanine. Evidence is provided that α-oxidation of phenylacetyl-CoA is catalyzed by a membrane-bound enzyme. This is the first report on the complete anaerobic degradation of an aromatic amino acid and the regulation of this process. Received: 6 March 1997 / Accepted: 16 May 1997  相似文献   

4.
Abstract— Sulfated galactocerebroside synthesis was examined in vitro in mouse spinal cord cultures. This system permitted the study of the effects of phenylketonuric metabolites upon synthesis of a specific myelin component, sulfatide, formed early in postnatal development in mice. A significant reduction of Na235SO4 incorporation into myelin sulfatide was observed when spinal cord cultures were grown in the presence of 1000 μm -l -phenylalanine and 500 μm -phenylpyruvate (51 and 700%, respectively). No reduction was observed with β-phenyllactate (300 μm and) phenylacetate (250 μm ). Light microscopy indicated that the phenylpyruvate and phenylalanine treated cultures were less extensively myelinated compared to control and β-phenyllactate or phenylacetate treated cultures. The reduction of sulfatide synthesis by phenylpyruvate was shown to be reversible. Intracerebral bilateral injections (8 μg) of l -phenylalanine, phenylpyruvate, α-ketobutyrate, α-ketoisocaproate, α-ketoisovalerate, β-phenyllactate, and phenylacetate in mice 8–15 days old, followed by i.p. administration of radioactive sulfate, resulted in significantly reduced incorporation (all P < 0.05) of sulfate into brain sulfatides with all compounds tested with the exception of β-phenyllactate and phenylacetate. In adult mouse, phenylpyruvate treatment also resulted in a significant decrease in labelling of brain sulfatide. The effects of phenylpyruvate and other metabolites upon pyruvate oxidation in mouse brain homogenates were examined by measuring 14CO2 release from [1-14C]pyruvate. Both phenylpyruvate and α-ketoisocaproate at 1 × 10-3 resulted in a decrease in 14CO2 produced, while phenylacetate and β-phenyllactate had no effect. Sulfate incorporation into sulfatide was reduced by α-ketoisocaproate and phenylpyruvate, and to a lesser extent by phenylalanine, α-ketobutyrate, and α-ketoisovalerate. Phenyllactate and phenylacetate had no effect, either in vivo, or in culture. This order of effectiveness may be related in part to the effects of these compounds on pyruvate oxidation.  相似文献   

5.
Particulate and soluble fractions from leaves of Sorghum, Spinacia (spinach), and Coleus, capable of metabolizing l-phenylalanine to cinnamate or to caffeate, are also able to convert l-and d-phenylalanine to phenylacetate. Since cinnamate and phenylacetate are not effectively separated in commonly used chromatographic solvents, some of the isotropic assays used for phenylalanine ammonia-lyase are rendered ambiguous by the interference of this second pathway. Therefore, a "double decker," two-dimensional paper chromatographic method was designed to separate cinnamate and phenylacetate. This was combined with the use of phenylalanine labeled randomly or just in either the carbon 1 or 2 position of the side chain.  相似文献   

6.
Anaerobic oxidation of phenylalanine and phenylacetate proceeds via α-oxidation of phenylacetyl-CoA to phenylglyoxylate. This four-electron oxidation system was studied in the denitrifying bacterium Thauera aromatica. It is membrane-bound and was solubilized with Triton X-100. The system used dichlorophenolindophenol as an artificial electron acceptor; a spectrophotometric assay was developed. No other products besides phenylglyoxylate and coenzyme A were observed. The enzyme was quite oxygen-insensitive and was inactivated by low concentrations of cyanide. Enzyme activity was induced under denitrifying conditions with phenylalanine and phenylacetate, it was low in cells grown with phenylglyoxylate, and it was virtually absent in cells grown with benzoate and nitrate or after aerobic growth with phenylacetate. Received: 15 January 1998 / Accepted: 3 March 1998  相似文献   

7.
Phenylacetate-CoA ligase (E.C. 6.2.1.30), the initial enzyme in the metabolism of phenylacetate, was studied in Thermus thermophilus strain HB27. Enzymatic activity was upregulated during growth on phenylacetate or phenylalanine. The phenylacetate-CoA ligase gene (paaK) was cloned and heterologously expressed in Escherichia coli and the recombinant protein was purified. The enzyme catalyzed phenylacetate + CoA + MgATP --> phenylacetyl-CoA + AMP + MgPP(i) with a V(max) of 24 micromol/min/mg protein at a temperature optimum of 75 degrees C. The apparent K(m) values for ATP, CoA, and phenylacetate were 6, 30, and 50 microM: , respectively. The protein was highly specific toward phenylacetate and showed only low activity with 4-hydroxyphenylacetate. Despite an amino acid sequence identity of >50% with its mesophilic homologues, phenylacetate-CoA ligase was heat stable. The genome contained further homologues of genes, which are postulated to be involved in the CoA ester-dependent metabolic pathway of phenylacetate (hybrid pathway). Enzymes of this thermophile are expected to be robust and might be useful for further studies of this yet unresolved pathway.  相似文献   

8.
Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD+ and NADP+ as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.  相似文献   

9.
10.
1. The effects of phenylalanine and its metabolites (phenylacetate, phenethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 3-oxo acid CoA-transferase (EC 2.8.3.5) and acetoacetyl-CoA thiolase (EC 2.3.1.9) in brain of suckling rats were investigated. 2. The 3-hydroxybutyrate dehydrogenase from the brain of suckling rats had a Km for 3-hydroxybutyrate of 1.2 mM. Phenylpyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the enzyme activity with Ki values of 0.5, 1.3 and 4.7 mM respectively. 3. The suckling-rat brain 3-oxo acid CoA-transferase activity had a Km for acetoacetate of 0.665 mM and for succinyl (3-carboxypropionyl)-CoA of 0.038 mM. The enzyme was inhibited with respect to acetoacetate by phenylpyruvate (Ki equals 1.3 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). The reaction in the direction of acetoacetate was also inhibited by phenylpyruvate (Ki equals 1.6 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). 4. Phenylpyruvate inhibited with respect to acetoacetyl-CoA both the mitochondrial (Ki equals 3.2 mM) and cytoplasmic (Ki equals 5.2 mM) acetoacetyl-CoA thiolase activities. 5. The results suggest that inhibition of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities may impair ketone-body utilization and hence lipid synthesis in the developing brain. This suggestion is discussed with reference to the pathogenesis of mental retardation in phenylketonuria.  相似文献   

11.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl-tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl-tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl-tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl-tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

12.
Production of the antibiotic tropodithietic acid (TDA) depends on the central phenylacetate catabolic pathway, specifically on the oxygenase PaaABCDE, which catalyzes epoxidation of phenylacetyl-coenzyme A (CoA). Our study was focused on genes of the upper part of this pathway leading to phenylacetyl-CoA as precursor for TDA. Phaeobacter gallaeciensis DSM 17395 encodes two genes with homology to phenylacetyl-CoA ligases (paaK1 and paaK2), which were shown to be essential for phenylacetate catabolism but not for TDA biosynthesis and phenylalanine degradation. Thus, in P. gallaeciensis another enzyme must produce phenylacetyl-CoA from phenylalanine. Using random transposon insertion mutagenesis of a paaK1-paaK2 double mutant we identified a gene (ior1) with similarity to iorA and iorB in archaea, encoding an indolepyruvate:ferredoxin oxidoreductase (IOR). The ior1 mutant was unable to grow on phenylalanine, and production of TDA was significantly reduced compared to the wild-type level (60%). Nuclear magnetic resonance (NMR) spectroscopic investigations using (13)C-labeled phenylalanine isotopomers demonstrated that phenylalanine is transformed into phenylacetyl-CoA by Ior1. Using quantitative real-time PCR, we could show that expression of ior1 depends on the adjacent regulator IorR. Growth on phenylalanine promotes production of TDA, induces expression of ior1 (27-fold) and paaK1 (61-fold), and regulates the production of TDA. Phylogenetic analysis showed that the aerobic type of IOR as found in many roseobacters is common within a number of different phylogenetic groups of aerobic bacteria such as Burkholderia, Cupriavidis, and Rhizobia, where it may also contribute to the degradation of phenylalanine.  相似文献   

13.
The present study sought a biochemical explanation for retarded brain development in the heterozygous offspring of the phenylketonuric (PKU) mother. Two rat models of simulated maternal PKU, one induced by p-chlorophenylalanine and phenylalanine and the other by phenylacetate, were employed in this investigation. Maternal PKU had no influence on cerebral concentrations of DNA, protein, and cholesterol, which were normal in the 2 d old pup. However, there was a noticeable disruption of the normal ganglioside pattern and a significant reduction of sialoglycoproteins. Concomitant with a delayed drop in the gangliosides Q1b and D3, was a slower rise in M1 and D1a. At least 66% of sialoglycoproteins located on SDS-PAGE gel chromatograms, by radioactivity incorporated in vivo from radiolabeled N-acetylmannosamine and by (3H) sialic acid released by Neuraminidase from periodate-(3H)borohydride labeled glycoproteins, have mobilities of the cell adhesion molecules N-CAM and D-CAM. Whether the reduction of the sialoglycoproteins induced by maternal PKU is mainly in these cell adhesion molecules requires further investigation. Interference with the function of gangliosides and certain sialoglycoproteins during cerebral development may contribute to the brain dysfunction observed in the offspring of PKU mothers not on diet control during pregnancy.  相似文献   

14.
Aerobic metabolism of phenylalanine in most bacteria proceeds via oxidation to phenylacetate. Surprisingly, the further metabolism of phenylacetate has not been elucidated, even in well studied bacteria such as Escherichia coli. The only committed step is the conversion of phenylacetate into phenylacetyl-CoA. The paa operon of E. coli encodes 14 polypeptides involved in the catabolism of phenylacetate. We have found that E. coli K12 mutants with a deletion of the paaF, paaG, paaH, paaJ or paaZ gene are unable to grow with phenylacetate as carbon source. Incubation of a paaG mutant with [U-13C8]phenylacetate yielded ring-1,2-dihydroxy-1,2-dihydrophenylacetyl lactone as shown by NMR spectroscopy. Incubation of the paaF and paaH mutants with phenylacetate yielded delta3-dehydroadipate and 3-hydroxyadipate, respectively. The origin of the carbon atoms of these C6 compounds from the aromatic ring was shown using [ring-13C6]phenylacetate. The paaG and paaZ mutants also converted phenylacetate into ortho-hydroxyphenylacetate, which was previously identified as a dead end product of phenylacetate catabolism. These data, in conjunction with protein sequence data, suggest a novel catabolic pathway via CoA thioesters. According to this, phenylacetyl-CoA is attacked by a ring-oxygenase/reductase (PaaABCDE proteins), generating a hydroxylated and reduced derivative of phenylacetyl-CoA, which is not re-oxidized to a dihydroxylated aromatic intermediate, as in other known aromatic pathways. Rather, it is proposed that this nonaromatic intermediate CoA ester is further metabolized in a complex reaction sequence comprising enoyl-CoA isomerization/hydration, nonoxygenolytic ring opening, and dehydrogenation catalyzed by the PaaG and PaaZ proteins. The subsequent beta-oxidation-type degradation of the resulting CoA dicarboxylate via beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA appears to be catalyzed by the PaaJ, PaaF and PaaH proteins.  相似文献   

15.
In the rat phenylacetate readily penetrates into such tissues as brain, eyes, heart, kidneys, and liver. One hour after the subcutaneous injection of sodium phenylacetate into rats ranging in age from 1 to 65 days, the ratios of the concentrations (μmolig) in blood/tissue were approx 1:1 in all of these tissues with the exception of the brain. The blood-brain ratio changed from 1:1 in the 1–7 day old rat to the adult ratio of 2:1 at 21 days of age. The free access of phenylacetate into the immature brain is especially relevant to phenylketonuria, a metabolic disease in which excessive amounts of phenylacetate are produced in peripheral tissues.  相似文献   

16.
The decrease in the neural polyribosomes produced during hyperphenylalaninemia could not be restored to normal levels by the injection of other single neutral amino acids. All of the neutral amino acids that are transported with phenylalanine were found to produce an alteration of neural polyribosomes similar to that measured with phenylalanine. However, the injection of a balanced mixture of 6 or 7 neutral amino acids could restore the brain polyribosomes to normal states. Although this experimentally induced recovery did not lower brain phenylalanine concentrations, it did restore the acylation levels of methionyl-tRNA, and in particular, the methionyl-tRNA initiator species. This also led to a concomitant stimulation of the elongation rate of brain polypeptide synthesis. A natural recovery of brain polyribosomal levels (occurring 2 h after 1 mg/g phenylalanine is injected) did not appear to represent a real recovery of neural protein metabolism. Phenylalanine concentrations were increased in the brain, the acylation levels of methionyl-tRNA, alanyl-tRNA and the initiator methionyl-tRNA remained altered, and the rate of ribosome translocation was decreased 28%.  相似文献   

17.
Phenylketonuria (PKU) (OMIM 261600) is the first Mendelian disease to have an identified chemical cause of impaired cognitive development. The disease is accompanied by hyperphenylalaninemia (HPA) and elevated levels of phenylalanine metabolites (phenylacetate (PAA), phenyllactate (PLA), and phenylpyruvate (PPA)) in body fluids. Here we describe a method to determine the concentrations of PAA, PPA, and PLA in the brain of normal and mutant orthologous mice, the latter being models of human PKU and non-PKU HPA. Stable isotope dilution techniques are employed with the use of [(2)H(5)]-phenylacetic acid and [2,3, 3-(2)H(3)]-3-phenyllactic acid as internal standards. Negative ion chemical ionization (NICI)-GC/MS analyses are performed on the pentafluorobenzyl ester derivatives formed in situ in brain homogenates. Unstable PPA in the homogenate is reduced by NaB(2)H(4) to stable PLA, which is labeled with a single deuterium and discriminated from endogenous PLA in the mass spectrometer on that basis. The method demonstrates that these metabolites are easily measured in normal mouse brain and are elevated moderately in HPA mice and greatly in PKU mice. However, their concentrations are not sufficient in PKU to be "toxic"; phenylalanine itself remains the chemical candidate causing impaired cognitive development.  相似文献   

18.
Abstract— When day-old chicks were injected intraperitoneally with 1.62mmoles of l -phenylalanine, they developed a condition resembling narcosis. Simultaneously, whole brain levels of phenylalanine were 2–4 μmol/g, whereas those in control brain were 0.06 μmol/g. Examination of some glycolytic intermediates in the brain revealed significant decreases in fructose-1,6-diphosphate, l -α-glycerol phosphate and lactate, in comparison to the levels of these compounds in the saline-injected control animals. Levels of glucose and glucose-6-phosphate either increased or did not change, whereas levels of glycogen did not differ significantly. Phosphocreatine increased reciprocally with the decrease in inorganic phosphate. The levels of adenine nucleotide (energy charge) were not affected. Utilization of cerebral high-energy phosphates was depressed by 50–70 per cent when determined as a function of metabolic rate in the brain at 15- and 30-s periods of ischaemia according to the ‘closed-system’ technique. Explanations for these data have been examined, such as toxicity of phenylacetate and inhibition of glycolytic enzymes by phenylpyruvate and l -phenylalanine and their relevance to this study is discussed.  相似文献   

19.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl–tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl–tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl–tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl–tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

20.
Phenylalanine, phenylpyruvate and phenylacetate produced a considerable inhibition of chick liver mevalonate 5-pyrophosphate decarboxylase while mevalonate kinase and mevalonate 5-phosphate kinase were not significantly affected. Phenolic derivatives of phenylalanine produced a similar inhibition of decarboxylase activity than that found in the presence of phenyl metabolites. The degree of inhibition was progressive with increasing concentrations of inhibitors (1.25–5.00 mM). Simultaneous supplementation of different metabolites in conditions similar to those in experimental phenylketonuria (0.25 mM each) produced a clear inhibition of liver decarboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. To our knowledge, this is the first report on the in vitro inhibition of both liver regulatory enzymes of cholesterogenesis in phenylketonuria-like conditions. Our results show a lower inhibition of decarboxylase than that of reductase but suggest an important regulatory role of decarboxylase in cholesterol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号