首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, we describe the rational synthesis and functional analysis of novel high affinity inhibitors for the mammalian peptide transporter PEPT2. Moreover, we demonstrate which structural properties convert a transported compound into a non-translocated inhibitor. Starting from Lys[Z(NO(2))]-Pro (where Z is benzyloxycarbonyl), which we recently identified as the first competitive high affinity inhibitor of the intestinal peptide transporter PEPT1, a series of different lysine-containing dipeptide derivatives was synthesized and studied for interaction with PEPT2 based on transport competition assays in Pichia pastoris yeast cells expressing PEPT2 heterologously and in renal SKPT cells expressing PEPT2. In addition, the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT2 was used to determine whether the compounds are transported electrogenically or block the uptake of dipeptides. Synthesis and functional analysis of Lys-Lys derivatives containing benzyloxycarbonyl or 4-nitrobenzyloxycarbonyl side chain protections provided a set of inhibitors that reversibly inhibited the uptake of dipeptides by PEPT2 with K(i) values as low as 10 +/- 1 nm. This is the highest affinity of a ligand of PEPT2 ever reported. Moreover, based on the structure-function relationship, we conclude that the spatial location of the side chain amino protecting group in a dipeptide containing a diaminocarbonic acid and its intramolecular distance from the Calpha atom are key factors for the transformation of a substrate into an inhibitor of PEPT2.  相似文献   

2.
In this study we described the design, rational synthesis and functional characterization of a novel radiolabeled hydrolysis-resistant high-affinity substrate for H(+)/peptide cotransporters. L-4,4'-Biphenylalanyl-L-Proline (Bip-Pro) was synthesized according to standard procedures in peptide chemistry. The interaction of Bip-Pro with H(+)/peptide cotransporters was determined in intestinal Caco-2 cells constitutively expressing human H(+)/peptide cotransporter 1 (PEPT1) and in renal SKPT cells constitutively expressing rat H(+)/peptide cotransporter 2 (PEPT2). Bip-Pro inhibited the [(14)C]Gly-Sar uptake via PEPT1 and PEPT2 with exceptional high affinity (K(i) = 24 microm and 3.4 microm, respectively) in a competitive manner. By employing the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT1 or PEPT2 it was found that Bip-Pro was transported by both peptide transporters although to a much lower extent than the reference substrate, Gly-Gln. Bip-Pro remained intact to > 98% for at least 8 h when incubated with intact cell monolayers. Bip-[(3)H]Pro uptake into SKPT cells was linear for up to 30 min and pH dependent with a maximum at extracellular pH 6.0. Uptake was strongly inhibited, not only by unlabeled Bip-Pro but also by known peptide transporter substrates such as dipeptides, cefadroxil, Ala-4-nitroanilide and delta-aminolevulinic acid, but not by glycine. Bip-Pro uptake in SKPT cells was saturable with a Michaelis-Menten constant (K(t)) of 7.6 microm and a maximal velocity (V(max)) of 1.1 nmol x 30 min(-1) x mg of protein(-1). Hence, the uptake of Bip-Pro by PEPT2 is a high-affinity, low-capacity process in comparison to the uptake of Gly-Sar. We conclude that Bip-[(3)H]Pro is a valuable substrate for both mechanistic and structural studies of H(+)/peptide transporter proteins.  相似文献   

3.
The interaction of the antibacterial phosphonodipeptide alafosfalin with mammalian H(+)/peptide cotransporters was studied in Caco-2 cells, expressing the low-affinity intestinal type peptide transporter 1 (PEPT1), and SKPT cells, expressing the high-affinity renal type peptide transporter 2 (PEPT2). Alafosfalin strongly inhibited the uptake of [(14)C]glycylsarcosine with K(i) values of 0.19 +/- 0.01 mm and 0.07 +/- 0.01 mm for PEPT1 and PEPT2, respectively. Saturation kinetic studies revealed that in both cell types alafosfalin affected only the affinity constant (K(t)) but not the maximal velocity (V(max)) of glycylsarcosine (Gly-Sar) uptake. The inhibition constants and the competitive nature of inhibition were confirmed in Dixon-type experiments. Caco-2 cells and SKPT cells were also cultured on permeable filters: apical uptake and transepithelial apical to basolateral flux of [(14)C]Gly-Sar across Caco-2 cell monolayers were reduced by alafosfalin (3 mm) by 73%. In SKPT cells, uptake of [(14)C]Gly-Sar but not flux was inhibited by 61%. We found no evidence for an inhibition of the basolateral to apical uptake or flux of [(14)C]Gly-Sar by alafosfalin. Alafosfalin (3 mm) did not affect the apical to basolateral [(14)C]mannitol flux. Determined in an Ussing-type experiment with Caco-2 cells cultured in Snapwells trade mark, alafosfalin increased the short-circuit current through Caco-2 cell monolayers. We conclude that alafosfalin interacts with both H(+)/peptide symporters and that alafosfalin is actively transported across the intestinal epithelium in a H(+)-symport, explaining its oral availability. The results also demonstrate that dipeptides where the C-terminal carboxyl group is substituted by a phosphonic function represent high-affinity substrates for mammalian H(+)/peptide cotransporters.  相似文献   

4.
We investigated the interaction of rat PEPT2, a high-affinity peptide transporter, with neutral, anionic, and cationic dipeptides using electrophysiological approaches as well as tracer uptake methods. D-Phe-L-Gln (neutral), D-Phe-L-Glu (anionic), and D-Phe-L-Lys (cationic) were used as representative, non-hydrolyzable, dipeptides. All three dipeptides induced H+-dependent inward currents in Xenopus laevis oocytes heterologously expressing rat PEPT2. The H+:peptide stoichiometry was 1:1 in each case. A simultaneous measurement of radiolabeled dipeptide influx and charge transfer in the same oocyte indicated a transfer of one net positive charge into the oocyte per transfer of one peptide molecule irrespective of the charged nature of the peptide. We conclude that the zwitterionic peptides are preferentially recognized by PEPT2 as transportable substrates and that the proton/peptide stoichiometry is 1 for the transport process.  相似文献   

5.
To elucidate the decisive structural factors relevant for dipeptide-carrier interaction, the affinity of short amide and imide derivatives for the intestinal H+/peptide symporter (PEPT1) was investigated by measuring their ability to inhibit Gly-Sar transport in Caco-2 cells. Dipeptides with proline or alanine in the C-terminal position displayed affinity constants (Ki) of 0.15-1.2 mM and 0.08-9.5 mM, respectively. There was no clear relationship between hydrophobicity, size or ionization status of the N-terminal amino acid and the affinity of the dipeptides. However, analyzing the individual peptide bond conformations of Xaa-Pro dipeptides, a striking correlation between the cis/trans ratios (trans contents 24-70%) and the affinity constants was observed. After correcting the Ki values for the incompetent cis isomers, the Ki corr values of most dipeptides were in a small range of 0.1-0.16 mM. This result revealed the decisive role of peptide bond conformation even for a transport protein that is quite promiscuous in substrate translocation. When measuring affinity constants of Xaa-Pro and Xaa-Sar dipeptides, the cis/trans ratios cannot be ignored. Lower affinities of Lys-Pro, Arg-Pro and Pro-Pro indicate that additional molecular factors affect their binding at PEPT1. The Ki values obtained for the corresponding Xaa-Ala dipeptides support this conclusion. Potential substrates or inhibitors of peptide transport were found among Xaa-piperidides and Xaa-thiazolidides. Dipeptides with N-terminal proline displayed a very diverse affinity profile. However, in contrast to current knowledge, several Pro-Xaa dipeptides such as Pro-Leu, Pro-Tyr and Pro-Pro are recognized by PEPT1 with appreciable affinities. Binding seems mainly determined by the hydrophobicity of the C-terminal amino acid and the rigidity of the structure.  相似文献   

6.
We have cloned a peptide transporter from rat brain and found itto be identical to rat kidney PEPT2. In the present study wecharacterize the transport function of the rat brain PEPT2, withspecial emphasis on electrophysiological properties and interaction withN-acetyl-L-aspartyl-L-glutamate(NAAG). When heterologously expressed in HeLa cells and in SK-N-SHcells, PEPT2 transports several dipeptides but not free amino acids inthe presence of a proton gradient. NAAG competes with other peptidesfor the PEPT2-mediated transport process. When PEPT2 is expressed inXenopus laevis oocytes, substrate-induced inward currents are detectable with dipeptides ofdiffering charge in the presence of a proton gradient. Proton activation kinetics are similar for differently charged peptides. NAAGis a transportable substrate for PEPT2, as evidenced by NAAG-induced currents. The Hill coefficient for protons for the activation of thetransport of differently charged peptides, including NAAG, is 1. Although the peptide-to-proton stoichiometry for negatively chargedpeptides is 1, the transport nonetheless is associated with transfer ofpositive charge into the oocyte, as indicated by peptide-induced inwardcurrents.

  相似文献   

7.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

8.
The lactating mammary gland utilizes free plasma amino acids as well as those derived by hydrolysis from circulating short-chain peptides for protein synthesis. Apart from the major route of amino acid nitrogen delivery to the gland by the various transporters for free amino acids, it has been suggested that dipeptides may also be taken up in intact form to serve as a source of amino acids. The identification of peptide transporters in the mammary gland may therefore provide new insights into protein metabolism and secretion by the gland. The expression and distribution of the high-affinity type proton-coupled peptide transporter PEPT2 were investigated in rat lactating mammary gland as well as in human epithelial cells derived from breast milk. By use of RT-PCR, PEPT2 mRNA was detected in rat mammary gland extracts and human milk epithelial cells. The expression pattern of PEPT2 mRNA revealed a localization in epithelial cells of ducts and glands by nonisotopic high resolution in situ hybridization. In addition, immunohistochemistry was carried out and showed transporter immunoreactivity in the same epithelial cells of the glands and ducts. In addition, two-electrode voltage clamp recordings using PEPT2-expressing Xenopus laevis oocytes demonstrated positive inward currents induced by selected dipeptides that may play a role in aminonitrogen handling in mammalian mammary gland. Taken together, these data suggest that PEPT2 is expressed in mammary gland epithelia, in which it may contribute to the reuptake of short-chain peptides derived from hydrolysis of milk proteins secreted into the lumen. Whereas PEPT2 also transports a variety of drugs, such as selected beta-lactams, angiotensin-converting enzyme inhibitors, and antiviral and anticancer metabolites, their efficient reabsorption via PEPT2 may reduce the burden of xenobiotics in milk.  相似文献   

9.
We determined the effects of (+)pentazocine, a selective sigma(1) ligand, on the uptake of glycylsarcosine (Gly-Sar) in the human intestinal cell line Caco-2 which expresses the low affinity/high capacity peptide transporter PEPT1. Confluent Caco-2 cells were treated with various concentrations of (+)pentazocine for desired time (mostly 24 hr). The activity of PEPT1 was assessed by measuring the uptake of [(14)C]Gly-Sar in the presence of a H(+) gradient. (+)Pentazocine increased the uptake of [(14)C]Gly-Sar mediated by PEPT1 in a concentration- and time-dependent manner. Kinetic analyses have indicated that (+)pentazocine increased the maximal velocity (V(max)) for Gly-Sar uptake in Caco-2 cells without affecting the Michaelis-Menten constant (K(t)). In addition, semi-quantitative RT-PCR revealed that treatment of (+)pentazocine increased PEPT1 mRNA in Caco-2 cells in a concentration-dependent manner. These data suggest that sigma(1) receptor ligand (+)pentazocine up-regulates PEPT1 in Caco-2 cells at the level of increased mRNA, causing an increase in the density of the transporter protein in the cell membrane.  相似文献   

10.
Free amino acids and short chain peptides are the main digestion products of dietary proteins in the small intestine. Whether there is a direct interference in transport of both groups of degradation products is not known. We used human intestinal Caco-2 cells to investigate whether the absorption of dipeptides by the peptide transporter PEPT1 alters the apical uptake of free cationic and neutral amino acids. Influx of L-[3H]Arg into Caco-2 cells was Na+-independent and mediated mainly by the b(0,+) system recognizing both cationic and neutral amino acids. Preincubation of cells with 10 mM of selected neutral, mono- or dicationic dipeptides increased the influx of L-Arg up to fourfold. Preloading with equivalent concentrations of the corresponding free amino acids also increased L-Arg influx but dipeptides always proved to be more efficient. The observed trans-stimulation was found to be specific for cationic amino acids since transport of L-[3H]Ala remained unaffected. We here demonstrate for the first time a direct interplay in amino acid and peptide transport in intestinal cells that may selectively alter the kinetics of amino acid absorption.  相似文献   

11.
Recently the existence of two different Na(+)-coupled oligopeptide transport systems has been described in mammalian cells. These transport systems are distinct from the previously known H(+)/peptide cotransporters PEPT1 and PEPT2, which transport only dipeptides and tripeptides. To date, the only peptide transport system known to exist in the intestine is PEPT1. Here we investigated the expression of the Na(+)-coupled oligopeptide transporters in intestinal cell lines, using the hydrolysis-resistant synthetic oligopeptides deltorphin II and [d-Ala(2),d-Leu(5)]enkephalin (DADLE) as model substrates. Caco-2 cells and CCD841 cells, both representing epithelial cells from human intestinal tract, were able to take up these oligopeptides. Uptake of deltorphin II was mostly Na(+) dependent, with more than 2 Na(+) involved in the uptake process. In contrast, DADLE uptake was only partially Na(+) dependent. The uptake of both peptides was also influenced by H(+) and Cl(-), although to a varying degree. The processes responsible for the uptake of deltorphin II and DADLE could be differentiated not only by their Na(+) dependence but also by their modulation by small peptides. Several dipeptides and tripeptides stimulated deltorphin II uptake but inhibited DADLE uptake. These modulating small peptides were, however, not transportable substrates for the transport systems that mediate deltorphin II or DADLE uptake. These two oligopeptide transport systems were also able to take up several nonopioid oligopeptides, consisting of 9-17 amino acids. This represents the first report on the existence of transport systems in intestinal cells that are distinct from PEPT1 and capable of transporting oligopeptides consisting of five or more amino acids.  相似文献   

12.
The two closely related, proton-coupled, electrogenic mammalian peptide transporters PEPT1 and PEPT2 differ substantially in substrate affinity and mode of function. The intestinal carrier PEPT1 has a lower affinity for most substrates than the isoform PEPT2 that is expressed in kidney, lung, brain and other tissues. A previous analysis of PEPT1-PEPT2 chimeras has suggested that the N-terminal half of the carrier proteins is important for substrate affinity. We constructed and analyzed new PEPT1-PEPT2 chimeras for identifying smaller segments within the N-terminal region of the transporter proteins that contribute to the kinetic properties. The first 59 or 91 amino-acid residues of PEPT1 were used to replace the corresponding region in PEPT2 leading to the chimeras CH3 and CH4, which could be analyzed when expressed in Xenopus laevis oocytes. Substrate affinities of both chimeras for the zwitterionic substrate D-Phe-Ala ranged between those that are characteristic for either PEPT1 or PEPT2, but when charged dipeptide substrates were employed, both chimeras possessed PEPT1-like affinities. The chimera CH3 carrying the N-terminal 59 amino-acid residues of PEPT1 exhibited a PEPT2-like phenotype with respect to pHout-dependency as well as to the current-voltage relationship of inward currents. In the chimera CH4 possessing the 91 amino-terminal residues of PEPT1, a pronounced alteration in the pHout-dependence was observed, with highest transport rates occurring at pH values as low as pH 4.0. Based on this analysis, we propose that the two identified aminoterminal regions in mammalian peptide carriers play an important role in determining the substrate affinity and also other characteristic features of the two transporter subtypes.  相似文献   

13.
Endogenous porphyrin accumulation after administration of 5-aminolevulinic acid is employed in photodynamic therapy of tumours. Due to its low membrane permeability, esterified 5-aminolevulinic acid derivatives less hydrophilic than the parental compound are under investigation. Knowledge of the mechanisms of 5-aminolevulinic acid derivatives uptake into target cells is essential to understand and improve photodynamic therapy and useful in the design of new derivatives with better affinity and with higher selectivity for tumour cells in specific tissues. The aim of this work was to assess the interaction of 5-aminolevulinic acid derivatives with the intestinal PEPT1 and renal transporter PEPT2 expressed in Pichia pastoris yeasts. We found that Undecanoyl, Hexyl, Methyl and 2-(hydroxymethyl)tetrahydropyranyl 5-aminolevulinic acid esters and the dendron 3m-ALA inhibited (14)C-5-aminolevulinic acid uptake by PEPT2. However, only the Undecanoyl ester inhibited 5-aminolevulinic acid uptake by PEPT1. We have also found through a new developed colorimetric method, that Hexyl and 2-(hydroxymethyl)tetrahydropyranyl 5-aminolevulinic acid esters display more affinity than 5-aminolevulinic acid for PEPT2 whereas none of the compounds surpass 5-aminolevulinic acid affinity for PEPT1. In addition, the Undecanoyl ester binds with high affinity to the membranes of PEPT2 and PEPT1-expressing yeasts and to the control yeasts. The main finding of this work was that some derivatives have the potential to improve 5-aminolevulinic acid-based photodynamic therapy by increased efficiency of transport into cells expressing PEPT2 such as kidney, mammary gland, brain or lung whereas in tissues expressing exclusively PEPT1 the parent 5-aminolevulinic acid remains the compound of choice.  相似文献   

14.
At least two different models for the transmembrane topology of the glutamate receptor subunits have been proposed. We investigated some features of these two models for the GluR1 subunit by inserting epitope tags between residues Lys(502)-Pro(503), Ala(632)-Glu(633), Lys(712)-Pro(713), or after the C-terminal residue Leu(889). The accessibility of the tags then was detected using a tag-specific antibody before and after detergent-permeabilizing oocytes expressing the tagged subunits. The epitope tag inserted between residues Lys(712)-Pro(713) is extracellular and after Leu(889) intracellular. Epitope tags inserted between residues Lys(502)-Pro(503) and residues Ala(632)-Glu(633) were not detectable. Collectively, these results provide supporting evidence for a previously proposed topological model of GluR subunits containing an N-terminal extracellular domain, three transmembrane domains, the first two of which are bridged by a reentrant membrane pore-lining loop, and an intracellular C-terminal domain.  相似文献   

15.
Wang W  Liu Q  Wang C  Meng Q  Kaku T  Liu K 《Peptides》2011,32(5):946-955
To investigate the effect of JBP485 (an anti-inflammatory dipeptide) on PEPT1 in indomethacin-induced intestinal injury in rats and damage in Caco-2 cells, the activity and expression of PEPT1 were examined. The effects of treatment with indomethacin and co-treatment with JBP485 were examined in terms of intestinal histological changes, MDA and MPO levels in rats; as well as LDH-release and oxidative stress in Caco-2 cells. Uptake of glycylsarcosine (Gly-Sar) by PEPT1 was determined by in vivo, in vitro and in situ studies. RT-PCR and Western blot were used to assess the expression of PEPT1 in rat intestine and Caco-2 cells. JBP485 caused a significant decrease in MDA and MPO levels, and improved the pathological condition of rat intestine, while attenuating Caco-2 cells damage induced by indomethacin. Uptake of Gly-Sar by PEPT1 was decreased by indomethacin treatment, whereas the Gly-Sar plasma concentration was markedly increased in JBP485 co-treated rats. Indomethacin down-regulated the expression of PEPT1 mRNA and protein in rat intestine and Caco-2 cells, and the effects were reversed after administration of JBP485. These results indicated that JBP485 not only improved intestinal injury and cell damage but also partially blocked the down-regulation of PEPT1 expression and function induced by indomethacin.  相似文献   

16.
G-protein coupled receptors are not considered to exhibit voltage sensitivity. Here, using Xenopus oocytes, we show that the M2 muscarinic receptor (m2R) is voltage-sensitive. The m2R-mediated potassium channel (GIRK) currents were used to assay the activity of m2R. We found that the apparent affinity of m2R toward acetylcholine (ACh) was reduced upon depolarization. Binding experiments of [3H]ACh to individual oocytes expressing m2R confirmed the electrophysiological findings. When the GIRK channels were activated either by overexpression of Gbetagamma subunits or by injection of GTPgammaS, the ratio between the currents measured at -60 mV and +40 mV was the same as for the basal activity of the GIRK channel. Thus, the steps downstream to agonist activation of m2R are not voltage-sensitive. We further found that, in contrast to m2R, the apparent affinity of m1R was increased upon depolarization. We also found that the voltage sensitivity of binding of [3H]ACh to oocytes expressing m2R was greatly diminished following pretreatment with pertussis toxin. The cumulative results suggest that m2R is, by itself, voltage-sensitive. Furthermore, the voltage sensitivity does not reside in the ACh binding site, rather, it most likely resides in the receptor region that couples to the G-protein.  相似文献   

17.
The Arabidopsis AtPTR2 and fungal fPTR2 genes, which encode H+/dipeptide cotransporters, belong to two different subgroups of the peptide transporter (PTR) (NRT1) family. In this study, the kinetics, substrate specificity, stoichiometry, and voltage dependence of these two transporters expressed in Xenopus oocytes were investigated using the two-microelectrode voltage-clamp method. The results showed that: 1) although AtPTR2 belongs to the same PTR family subgroup as certain H+/nitrate cotransporters, neither AtPTR2 nor fPTR2 exhibited any nitrate transporting activity; 2) AtPTR2 and fPTR2 transported a wide spectrum of dipeptides with apparent affinity constants in the range of 30 microM to 3 mM, the affinity being dependent on the side chain structure of both the N- and C-terminal amino acids; 3) larger maximal currents (Imax) were evoked by positively charged dipeptides in AtPTR2- or fPTR2-injected oocytes; 4) a major difference between AtPTR2 and fPTR2 was that, whereas fPTR2 exhibited low Ala-Asp- transporting activity, AtPTR2 transported Ala-Asp- as efficiently as some of the positively charged dipeptides; 5) kinetic analysis suggested that both fPTR2 and AtPTR2 transported by a random binding, simultaneous transport mechanism. The results also showed that AtPTR2 and fPTR2 were quite distinct from PepT1 and PepT2, two well characterized animal PTR transporters in terms of order of binding of substrate and proton(s), pH sensitivity, and voltage dependence.  相似文献   

18.
Explants of the ganglion trigeminale (PNS) and of the telencephalon (CNS) from chick embryos were cultivated in MAXIMOW chambers in semisynthetic media in the presence of dipeptide fragments (Lys(Z)-Pro . HCl, Lys-Pro-2HBr, Arg-Pro-2HCl) and the heptapeptide (SP5-11) of substance P as well as the complete substance P (SP1-11). 1. Histological examination of the dipeptide-treated CNS explants indicates that the structure of outgrowth in vitro is changed. Fascicel were observed. A stimulation of nerve fibre extension did not take place. 2.1. In dipeptide-treated PNS cultures the index of areas covered by the explants increased. 2.2. The index of nerve fibre growth increased significantly. The stimulation was caused in multiplication of fibres. Only Lys(Z)-Pro . HCl presents a prolongation of neurites. 2.3. SP5-11 effects in no case the growth of nerve fibres. SP1-11 stimulated significantly the fibre regeneration. 3. The possible role of SP1-11 with different effects under in vitro conditions is discussed. Only the N-terminal dipeptides stimulate the growth of nerve fibres. The C-terminal SP5-11 is without effect. Finally it is stated that the best results in neuritic enlargement and neurogenesis can only be obtained by cultivation with SP1-11.  相似文献   

19.
The capability for electrogenic inward transport of substrates that carry different net charge is a phenomenon observed in a variety of membrane-solute transporters but is not yet understood. We employed the two-electrode voltage clamp technique combined with intracellular pH recordings and the giant patch technique to assess the selectivity for bidirectional transport and the underlying stoichiometries in proton to substrate flux coupling for electrogenic transfer of selected anionic, cationic, and neutral dipeptides by the intestinal peptide transporter PEPT1. Anionic dipeptides such as Gly-Asp and Asp-Gly are transported in their neutral and negatively charged forms with high and low affinities, respectively. The positive transport current obtained with monoanionic substrates results from the cotransport of two protons. Cationic dipeptides can be transported in neutral and positively charged form, resulting in an excess transport current as compared with neutral substrates. However, binding and transport of cationic dipeptides shows a pronounced selectivity for the position of charged side chains demonstrating that the binding domain of PEPT1 is asymmetric, both in its inward and outward facing conformation. The simultaneous presence of identically charged substrates on both membrane surfaces generates outward and, unexpectedly, enhanced inward transport currents probably by increasing the turnover rate.  相似文献   

20.
The mechanism by which H+ alters the kinetics of the H+-coupled peptide transporters PEPT 1 and PEPT 2 was investigated in two different cell lines which differentially express these transporters, namely Caco-2 cells (PEPT 1) and SKPT cells (PEPT 2). The effects of H+ on the affinity and the maximal velocity of Gly-Sar uptake were analyzed in these cells under identical conditions. In both cells, H+ influenced only the maximal velocity of uptake and not the apparent affinity. The effects of H+ on the IC50 values (i.e., concentration necessary to cause 50% inhibition) of the cationic dipeptide Ala-Lys and the anionic dipeptide Ala-Asp for inhibition of Gly-Sar uptake were also investigated. H+ did not change the IC50 value for Ala-Lys but did decrease the IC50 value for Ala-Asp considerably. The influence of diethylpyrocarbonate (DEP) on the kinetic parameters of PEPT 1 and PEPT 2 was then studied. Histidyl residues are the most likely amino acid residues involved in H+ binding and translocation in H+-coupled transport systems and DEP is known to chemically modify histidyl residues and block their function. DEP treatment altered the maximal velocity of Gly-Sar uptake but had no effect on its Kt (Michaelis-Menten constant) or the IC50 values of Ala-Lys or Ala-Asp for the inhibition of Gly-Sar uptake. It is concluded that H+ stimulates PEPT 1 and PEPT 2 primarily by increasing the maximal velocity of the transporters with no detectable influence on the substrate affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号