首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have shown that reactive oxygen species (ROS) enhance arachidonic acid (AA) release and the subsequent AA metabolism in macrophages. The purpose of this study was determined the implication of phospholipases A2 (PLA2s) in these events. Our results show that oxidative stress induced by exogenous adding of hydrogen peroxide or superoxide anion in macrophage RAW 264.7 and mouse peritoneal macrophage cultures caused a marked enhancement of calcium-independent PLA2 (iPLA2) activity,whereas the increment of secreted PLA2 (sPLA2) and calcium-dependent cytosolic PLA2 (cPLA2) activities were slight. This increase of iPLA2 activity by ROS was rapid and dose-dependent. ROS also induced a significant [3H] arachidonic acid (AA) release. The iPLA2 selective inhibitor, bromoenol lactone, almost completely suppressed the mobilization of [3H]AA induced by ROS whereas antisense oligonucleotide against cPLA2 did not have any appreciable effect. Thus, our data show that iPLA2 activity is involved in the mechanism by which ROS increases the availability of free AA in macrophages RAW 264.7. Moreover, the protein kinase C (PKC) inhibitor, calphostin C, and calcium chelators had no effect on the [3H]AA release induced by ROS, suggesting this is a regulatory role of iPLA2.  相似文献   

2.
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response.  相似文献   

3.
Previous studies have demonstrated that P388D(1) macrophages are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in two temporally distinct phases. The first phase is triggered by platelet-activating factor within minutes, but needs the cells to be previously exposed to bacterial lipopolysaccharide (LPS) for periods up to 1 h. It is thus a primed immediate phase. The second, delayed phase occurs in response to LPS alone over long incubation periods spanning several hours. Strikingly, the effector enzymes involved in both of these phases are the same, namely the cytosolic group IV phospholipase A(2) (cPLA(2)), the secretory group V phospholipase A(2), and cyclooxygenase-2, although the regulatory mechanisms differ. Here we report that P388D(1) macrophages mobilize AA and produce prostaglandins in response to zymosan particles in a manner that is clearly different from the two described above. Zymosan triggers an immediate AA mobilization response from the macrophages that neither involves the group v phospholipase A(2) nor requires the cells to be primed by LPS. The group VI Ca(2+)-independent phospholipase A(2) is also not involved. Zymosan appears to signal exclusively through activation of the cPLA(2), which is coupled to the cyclooxygenase-2. These results define a secretory PLA(2)-independent pathway for AA mobilization in the P388D(1) macrophages, and demonstrate that, under certain experimental settings, stimulation of the cPLA(2) is sufficient to generate a prostaglandin biosynthetic response in the P388D(1) macrophages.  相似文献   

4.
The active components of a primary pyrogenic liver abscess (PLA) Klebsiella pneumoniae in stimulating cytokine expression in macrophages are still unclear. The capsular polysaccharide (CPS) of PLA K. pneumoniae is important in determining clinical manifestations, and we have shown that it consists of repeating units of the trisaccharide (→3)-β-D-Glc-(1→4)-[2,3-(S)-pyruvate]-β-D-GlcA-(1→4)-α-L-Fuc-(1→) and has the unusual feature of extensive pyruvation of glucuronic acid and acetylation of C(2)-OH or C(3)-OH of fucose. We demonstrated that PLA K. pneumoniae CPS induces secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by macrophages through Toll-like receptor 4 (TLR4) and that this effect was lost when pyruvation and O-acetylation were chemically destroyed. Furthermore, expression of TNF-α and IL-6 in PLA K. pneumoniae CPS-stimulated macrophages was shown to be regulated by the TLR4/ROS/PKC-δ/NF-κB, TLR4/PI3-kinase/AKT/NF-κB, and TLR4/MAPK signaling pathways.  相似文献   

5.
Arachidonic acid (AA) can be released from membrane phospholipids by the action of phospholipase A2 (PLA2). There is evidence that unsaturated fatty acids, particularly AA, released from membrane phospholipids are required to activate the respiratory burst of macrophages. The data reported here indicate that peritoneal macrophages harvested 30 min after i.p. injection of PLA2 can phagocytose Candida albicans more efficiently and emit more chemoluminescence (CL) than normal cells when stimulated by zymosan. PLA2 injection also enhances the CL of peritoneal cells from mice already stimulated by immunomodulators such as trehalose dimycolate (TDM), bestatin, or oncostatic drugs such as aclacinomycin (ACM). CL is not sensitive to potassium cyanide (KCN), but is inhibited by catalase, superoxide dismutase (SOD), nordihydroguaiaretic acid (NDGA) and high doses of indomethacin (10(-3) M). In vivo PLA2 treatment stimulates the synthesis of both cyclooxygenase and lipoxygenase derivatives of AA metabolism (PGE2, 6-keto, PGF1 alpha TXB2 and LTC4). Inhibitors of AA metabolism (NDGA, indomethacin) modulate the production of free oxidizing radicals in this experimental model, partly because of their effect on AA metabolism, as determined by the measuring immunoreactive products. However, this work indicates that the effects of these inhibitors, which have been extensively used in CL studies, should be interpreted with caution, since their specificity for AA metabolism is relative.  相似文献   

6.
Prostaglandins (PG), which are responsible for a large array of biological functions in eukaryotic cells, are produced from arachidonic acid by phospholipases and cyclooxygenase enzymes COX-1 and COX-2. We demonstrated that PG levels in cells were partly controlled by a regulatory protein, phospholipase A2 (PLA2)-activating protein (PLAA). Treatment of murine macrophages with lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha increased PLAA levels at early time points (2-30 min), which correlated with an up-regulation in cytosolic PLA2 and PGE2 levels. Both COX-2 and secretory PLA2 were also increased in lipopolysaccharide-stimulated macrophages, however, at later time points of 4-24 h. The role of PLAA in eicosanoid formation in macrophages was confirmed by the use of an antisense plaa oligonucleotide. Within amino acid residues 503-538, PLAA exhibited homology with melittin, and increased PGE(2) production was noted in macrophages stimulated with melittin. In addition to PLA2, we demonstrated that activation of phospholipase C and D significantly controlled PGE2 production. Finally, increased antigen levels of PLAA, COX-2, and phospholipases were demonstrated in biopsy specimens from patients with varying amounts of intestinal mucosal inflammation, which corresponded to increased levels of phospholipase activity. These results could provide a basis for the development of new therapeutic tools to control inflammation.  相似文献   

7.
Chemical modification of chitosan by grafting with PLA (CS-g-PLA) was developed via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) mediated coupling reaction. The introduction of PLA disrupted the crystalline structure of chitosan, improved its solubility and thermal stability. Low degree of PLA substitution showed better degradation efficiency than chitosan and PLA. Weight loss of CS-g-PLA6 and CS-g-PLA4 was 87% and 94%, respectively, in 7 days enzymatic degradation study. CS-g-PLA2 was totally degraded in 1 day. Self-assembly behavior was studied using pyrene fluorescence dye technique and found to be PLA grafting level dependent. CS-g-PLA with low grafting degree showed hydrophilic, self-assembling properties and controllable biodegradability that may widen its applications.  相似文献   

8.
Generation of arachidonic acid by the ubiquitously expressed cytosolic phospholipase A2 (PLA2) has a fundamental role in the regulation of cellular homeostasis, inflammation and tumorigenesis. Here we report that cytosolic PLA2 is a negative regulator of growth, specifically of striated muscle. We find that normal growth of skeletal muscle, as well as normal and pathologic stress-induced hypertrophic growth of the heart, are exaggerated in Pla2g4a-/- mice, which lack the gene encoding cytosolic PLA2. The mechanism underlying this phenotype is that cytosolic PLA2 negatively regulates insulin-like growth factor (IGF)-1 signaling. Absence of cytosolic PLA2 leads to sustained activation of the IGF-1 pathway, which results from the failure of 3-phosphoinositide-dependent protein kinase (PDK)-1 to recruit and phosphorylate protein kinase C (PKC)-zeta, a negative regulator of IGF-1 signaling. Arachidonic acid restores activation of PKC-zeta, correcting the exaggerated IGF-1 signaling. These results indicate that cytosolic PLA2 and arachidonic acid regulate striated muscle growth by modulating multiple growth-regulatory pathways.  相似文献   

9.
The release and the mobilization of arachidonic acid from guinea-pig alveolar macrophages labeled with [1-14C]arachidonic acid for short (1 h) and long (18 h) periods and stimulated with PAF-acether (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was studied. After short labeling periods arachidonic acid was primarily incorporated into alkylacyl- and diacylglycerophosphocholine (alkylacylGPC, diacylGPC) and glycerophosphoinositol (GPI), whereas after long labeling periods arachidonic acid was mainly incorporated into alkenylacylglycerophosphoethanolamine (alkenylacylGPE). In macrophages labeled for 1 h, PAF-acether (1 microM) induced a significant decrease in the amount of arachidonic acid esterified into diacyl- and alkylacylGPC and GPI, as well as a significant increase of arachidonate transferred into alkenylacylGPE. No significant decrease in arachidonate esterified in GPC fractions and in GPI was induced by PAF-acether in macrophages labeled for 18 h, whereas the increased transfer of the fatty acid into alkenylacylGPE was still measurable. This study shows that PAF-acether induces the release and the mobilization of newly incorporated arachidonic acid in alveolar macrophages. When cells are labeled for long periods and the majority of arachidonic acid is retained in ether-linked phospholipids, no PAF-acether-induced release of arachidonate was obtained, whereas its transfer was maintained.  相似文献   

10.
Murine P388D(1) macrophages exhibit a delayed prostaglandin biosynthetic response when exposed to bacterial lipopolysaccharide (LPS) for prolonged periods of time that is dependent on induction of the genes coding for Group V secretory phospholipase A(2) and cyclooxygenase-2. We herein report that LPS-induced arachidonic acid (AA) metabolite release in P388D(1) macrophages is strongly attenuated by the P2X(7) purinergic receptor antagonists periodate-oxidized ATP and pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid, and this is accompanied by suppression of the expression of both Group V secretory phospholipase A(2) and cyclooxygenase-2. The effect appears to be specific for LPS, because the P2 purinergic receptor antagonists do not affect P388D(1) cell stimulation by other stimuli such as platelet-activating factor or the Ca(2+) ionophore A23187. Moreover, extracellular nucleotides are found to stimulate macrophage AA mobilization with a pharmacological profile that implicates the participation of the P2X(7) receptor and that is inhibited by periodate-oxidized ATP. Collectively these results demonstrate coupling of the P2X(7) receptor to the AA cascade in P388D(1) macrophages and implicate the participation of this type of receptor in LPS-induced AA mobilization.  相似文献   

11.
Arachidonic acid (AA) mobilization by phospholipase A2 (PLA2) and subsequent prostaglandin synthesis is considered to be a pivotal event in inflammation. The purpose of this study was to assess the efficacy of a Type II PLA2 specific inhibitor, SB 203347, in reducing prostaglandin production in Type II PLA2-transfected Chinese hamster ovary (CHO) cells and in human placenta. In both experimental models utilised, Type II PLA2 represents the principal isozyme contributing to total PLA2 enzymatic activity. PLA2 enzymatic activity released into cell culture media and placental explant media was quantified by radiolabelled substrate assay [14C-phosphatidylethanolamine (PE)]. Immunoreactive prostaglandin F2alpha (PGF2alpha) concentrations were determined by radioimmunoassay. SB 203347 (at 0.1-10 microM final concentration) inhibited PLA2 enzymatic activity released by Zn++ -activated CHO cells by up to 60% (P<0.0001). The concentration of PGF2alpha present in culture media was concomitantly reduced by up to 90% (P<0.0001). Similar results were observed for human placental explants. Treatment of human placental explants with SB 203347 (1 microM final concentration) significantly reduced PLA2 enzymatic activity recovered in media after 24 h incubation (P<0.0001; n = 10). Incubation media PGF2alpha concentrations were also reduced by 60% (P<0.00001). The addition of endogenous arachidonic acid (30 microM final concentration) significantly attenuated SB 203347-inhibition of PGF2alpha release (P<0.01). The data obtained in this study are consistent with the hypothesis that Type II PLA2 contributes to the liberation of arachidonic acid for prostanoid formation in human placenta and in cells that abundantly express this isozyme.  相似文献   

12.
Porins, a family of hydrophobic proteins located in the outer membrane of cell-wall of Gram-negative bacteria, were shown to stimulate the synthesis and release of platelet-activating factor (PAF), a 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine mediator of inflammation and endotoxic shock produced by polymorphonuclear neutrophils. PAF synthesis was independent either from contamination by LPS or generation of TNF. Experiments with labeled precursors demonstrated that PAF was synthesized via the remodeling pathway that involves acetylation of 1-O-alkyl-sn-glyceryl-3-phosphorylcholine generated from 1-O-alkyl-2-acyl-sn-glyceryl-3-phosphorylcholine by phospholipase A2 (PLA2) activity. Porins, indeed, induced a sustained PLA2-dependent mobilization of [14C]arachidonic acid that was inhibited by p-bromodiphenacylbromide. p-Bromodiphenacylbromide, an inhibitor of PLA2, also blocked PAF synthesis by preventing the mobilization of 2-lyso-PAF, the substrate for PAF-specific acetyltransferase. The addition of 2-lyso-PAF restored PAF synthesis. The activity of acetyl CoA:2-lyso-PAF acetyltransferase was transiently increased in porin-stimulated PMN and the [3H]acetyl group was incorporated in the synthetized PAF after cell preincubation with [3H]acetyl CoA. The activation of PAF synthesis by porins as well as its release were dependent on extracellular Ca2+. Porins by forming trans-membrane channels determined a sustained influx of 45Ca2+ into the cytosol. As shown by inhibitors of Ca(2+)-calmodulin complexes, calmodulin mediated the Ca(2+)-dependent activation of enzymes involved in PAF synthesis.  相似文献   

13.
Among the many mammalian secreted phospholipase A2 (sPLA2) enzymes, PLA2G3 (group III secreted phospholipase A2) is unique in that it possesses unusual N- and C-terminal domains and in that its central sPLA2 domain is homologous to bee venom PLA2 rather than to other mammalian sPLA2s. To elucidate the in vivo actions of this atypical sPLA2, we generated transgenic (Tg) mice overexpressing human PLA2G3. Despite marked increases in PLA2 activity and mature 18-kDa PLA2G3 protein in the circulation and tissues, PLA2G3 Tg mice displayed no apparent abnormality up to 9 months of age. However, alterations in plasma lipoproteins were observed in PLA2G3 Tg mice compared with control mice. In vitro incubation of low density (LDL) and high density (HDL) lipoproteins with several sPLA2s showed that phosphatidylcholine was efficiently converted to lysophosphatidylcholine by PLA2G3 as well as by PLA2G5 and PLA2G10, to a lesser extent by PLA2G2F, and only minimally by PLA2G2A and PLA2G2E. PLA2G3-modified LDL, like PLA2G5- or PLA2G10-treated LDL, facilitated the formation of foam cells from macrophages ex vivo. Accumulation of PLA2G3 was detected in the atherosclerotic lesions of humans and apoE-deficient mice. Furthermore, following an atherogenic diet, aortic atherosclerotic lesions were more severe in PLA2G3 Tg mice than in control mice on the apoE-null background, in combination with elevated plasma lysophosphatidylcholine and thromboxane A2 levels. These results collectively suggest a potential functional link between PLA2G3 and atherosclerosis, as has recently been proposed for PLA2G5 and PLA2G10.  相似文献   

14.
4-Bromophenacyl bromide (BPB) is generally used as a phospholipase A(2) (PLA2) inhibitor. In the present study, we demonstrate that BPB induces Ca2+ influx in human gingival fibroblasts. In fura-2-loaded human gingival fibroblasts, BPB evoked a transient increase in intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. The BPB-induced Ca2+ mobilization was also shown in a single fluo-3-loaded-fibroblast. The BPB-induced increase in [Ca2+]i was completely abolished by the elimination of the external Ca2+. Ca2+ influx induced by the Ca2+-mobilizing agonist histamine was markedly enhanced in the presence of BPB. These suggest that the BPB-induced Ca2+ mobilization is due to the influx of extracellular Ca2+. However, it is unlikely that the effect of BPB is dependent on the inhibition of PLA2 activity, because other PLA2 inhibitors, such as AACOCF3, quinacrine dihydrochloride and manoalide, failed to induce Ca2+ mobilization. Chemical compounds similar to BPB, but which have no -CH2-Br at position 1 in the benzene ring failed to evoke Ca2+ mobilization, indicating that the position of -CH2--Br in BPB is important for causing the Ca2+ influx.  相似文献   

15.
As a part of their surveillance functions in the immune system, monocytes/macrophages secrete large amounts of the bactericidal enzyme lysozyme to the extracellular medium. We report here that lysozyme secretion in activated U937 promonocytes depends on a functional calcium-independent phospholipase A(2) (iPLA(2)). Inhibition of the enzyme by bromoenol lactone or by treatment with a specific antisense oligonucleotide results in a diminished capacity of the cells to secrete lysozyme to the extracellular medium. Calcium-independent PLA(2) is largely responsible for the maintenance of the steady state of lysophosphatidylcholine (lysoPC) levels within the cells, as manifested by the marked decrease in the levels of this metabolite in cells deficient in iPLA(2) activity. Reconstitution experiments reveal that lysoPC efficiently restores lysozyme secretion in iPLA(2)-deficient cells, whereas other lysophospholipids, including lysophosphatidic acid, lysophosphatidylserine, and lysophosphatidylethanolamine, are without effect. Arachidonic acid mobilization in activated U937 cells is under control of cytosolic phospholipase A(2) (cPLA(2)). Selective inhibition of cPLA(2) results in a complete abrogation of the arachidonate mobilization response, but has no effect on lysozyme secretion. These results identify iPLA(2)-mediated lysoPC production as a necessary component of the molecular machinery leading to lysozyme secretion in U937 cells and rule out a role for cPLA(2) in the response. Collectively, the results demonstrate distinct roles in inflammatory cell signaling for these two intracellular phospholipases.  相似文献   

16.
The localization of calcium-dependent phospholipase A2, (PLA2) immunochemically closely related to the enzyme of the viperid and crotalid type (group II), in cells isolated from rat spleen and liver was examined using a polyclonal antibody directed against rat spleen group II, PLA2 (PLA2M). In isolated spleen cells, the monocyte/macrophage fraction had the highest PLA2 activity (1.28 +/- 0.35.min-1.10(6) cells-1) which was almost completely inhibited by the anti-PLA2M antibody. An immunoblot analysis confirmed the presence of the enzyme in this fraction. An immunocytochemical study revealed that the PLA2 was present in spleen macrophages. In the isolated liver cells, Kupffer cells (0.92 +/- 0.22 nmol.min-1.10(6) cells-1) contained higher anti-PLA2M-antibody-inhibitable PLA2 activity than parenchymal cells (0.26 +/- 0.06.min-1.10(6) cells-1). The immunocytochemical study showed that cells immunopositive with anti PLA2M antibody were Kupffer cells. These results suggest that the mononuclear phagocytic cells in rat spleen and liver have relatively high activity of group-II-like PLA2. Subcellular distribution patterns of the anti-PLA2M-antibody-inhibitable phospholipase A2 activity in different cell populations from spleen and liver were compared. A mode of the distribution of the enzyme in the spleen macrophages was essentially similar to that in the spleen lymphocytes. The distribution in Kupffer cells was similar to that in parenchymal cells.  相似文献   

17.
Previously, we reported a growth-dependent change in prostaglandin production as a consequence of a marked growth-dependent alteration in arachidonic acid (AA) mobilization from phospholipids. Our present results show that fetal calf serum (FCS) and 4 beta-phorbol-12-myristate acetate (PMA) caused an enhancement of phospholipase A(2) (PLA(2)) activity in the membrane fraction of non-confluent cells allowing PLA(2) access to its substrate and the release of AA. Western blot analysis has shown that FCS and PMA increased secreted PLA(2) (sPLA(2)) expression in non-confluent 3T6 fibroblast cultures. Moreover, FCS and PMA induced dithiothreitol-sensitive and bromoenol lactone-sensitive PLA(2) activities in cytosol and membrane fraction. However, these stimuli did not modify significantly the PLA(2) activity in both fractions when 3T6 fibroblasts reached a high cell density. This could be associated with the impairment of AA mobilization in these cell culture conditions. On the other hand, we observed that FCS and PMA induced the same prostaglandin H synthase-2 induction in non-confluent and confluent culture conditions. Moreover, the prostaglandin E(2) levels reached in cell culture supernatants were independent of the degree of confluence when AA was added exogenously. These results suggest that the changes of intracellular distribution of PLA(2) activity of sPLA(2) and iPLA(2) stimulated by exogenous stimuli may be controlled by cell density conditions which constitute an important mechanism in the regulation of prostaglandin release.Copyright 2001 Wiley-Liss, Inc.  相似文献   

18.
The presence of a phospholipase A2 (PLA2) activity in rabbit neutrophil membrane preparation that is able to release [1-14C]oleic acid from labelled Escherichia coli has been demonstrated. The activity is critically dependent on the free calcium concentration and marginally stimulated by GTP gamma S. More than 80% of maximal activity is reached at 10 microM-Ca2+. The chemotactic factor, fMet-Leu-Phe, does not stimulate the PLA2 activity in this membrane preparation. Pretreatment of the membrane preparation, under various experimental conditions, or intact cells, before isolation of the membrane with phorbol 12-myristate 13-acetate (PMA), does not affect PLA2 activity. Addition of the catalytic unit of cyclic AMP-dependent kinase to membrane preparation has no effect on PLA2 activity. Pretreatment of the intact neutrophil with dibutyryl-cAMP before isolation of the membrane produces a small but consistent increase in PLA2 activity. The activity of PLA2 in membrane isolated from cells treated with the protein kinase inhibitor 1-(5-isoquinolinesulphonyl)-2-methyl piperazine dihydrochloride (H-7) is significantly decreased. Furthermore, although the addition of PMA to intact rabbit neutrophils has no effect on the release of [3H]arachidonic acid from prelabelled cells, it potentiates significantly the release produced by the calcium ionophore A23187. This potentiation is not due to an inhibition of the acyltransferase activity. H-7 inhibits the basal release of arachidonic acid but does not inhibit the potentiation by PMA. These results suggest several points. (1) fMet-Leu-Phe does not stimulate PLA2 directly, and its ability to release arachidonic acid in intact neutrophils is mediated through its action on phospholipase C. (2) The potentiating effect of PMA on A23187-induced arachidonic acid release is most likely due to PMA affecting either the environment of PLA2 and/or altering the organization of membrane phospholipids in such a way as to increase their susceptibility to hydrolysis. (3) The intracellular level of cyclic AMP probably does not directly affect the activity of PLA2.  相似文献   

19.
20.
Enhanced prostaglandin (PG) biosynthesis is a hallmark of inflammation, and interleukin-1 (IL), a proinflammatory cytokine, is a potent stimulus of PG production. We investigated the mechanisms of IL-1 alpha-enhanced PG synthesis in serum-stimulated mesangial cells. The rIL-1-stimulated increase in PGE2 synthesis was dose- and time-dependent and inhibited by both cycloheximide and actinomycin D. Phospholipase (PL) activity was increased 5- to 10-fold in acid extracts of rIL-1-treated cells as measured by arachidonate release from exogenous [14C]arachidonyl-phosphatidyl-ethanolamine. This induced phospholipase activity was Ca(2+)-dependent and inhibited by the PLA2 inhibitors, aristocholic acid, 7,7-dimethyl-5,8-eicosadienoic acid, and p-bromophenacylbromide, but not by the 1,2-diacylglycerol lipase inhibitor RHC 80267. The rIL-1-stimulated PLA2 had an alkaline pH optimum, and phosphatidylethanolamine was preferred over phosphatidylcholine as substrate. The PLA2 activity increased by rIL-1 was inhibited in cells coincubated with cycloheximide and was measurable after 6 h. A sensitive and specific solution hybridization assay demonstrated a coordinate time-dependent induction of non-pancreatic PLA2 mRNA expression which was increased at least 6-fold by 24 h. In whole cells, IL-1 had no effect on basal [3H]arachidonic acid release but vasopressin (1 microM)-stimulated release was potentiated 2- to 3-fold, suggesting that IL-1 may prime cells for increased PG synthesis via increased PLA2 activity. Thus IL-1 directly stimulates, as well as primes cells for, enhanced PG synthesis, in part, by increasing PLA2 activity through new synthesis of a non-pancreatic (Type II) PLA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号