首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uridine catabolism in Kupffer cells, endothelial cells, and hepatocytes   总被引:1,自引:0,他引:1  
Kupffer cells, endothelial cells, and hepatocytes were separated by centrifugal elutriation. The rate of uracil formation from [2-14C]uridine, the first step in uridine catabolism, was monitored in suspensions of the three different liver cell types. Kupffer cells demonstrated the highest rate of uridine phosphorolysis. 15 min after the addition of the nucleoside the label in uracil amounted to 51%, 13%, and 19% of total radioactivity in the medium of Kupffer cells, endothelial cells, and hepatocytes, respectively. If corrected for Kupffer cell contamination, hepatocyte suspensions demonstrated similar activities as endothelial cells. In contrast to non-parenchymal cells, hepatocytes continuously cleared uracil from the incubation medium. The lack of uracil consumption by Kupffer cells and endothelial cells points to uracil as the end-product of uridine catabolism in these cells. Kupffer cells and endothelial cells did not produce radioactive CO2 upon incubation in the presence of [2-14C]uridine. Hepatocytes, however, were able to degrade uridine into CO2, beta-alanine, and ammonia as demonstrated by active formation of volatile radioactivity from the labeled nucleoside. There was almost no detectable formation of thymine from thymidine or of cytosine, uracil, or uridine from cytidine by any of the different cell types tested. These results are in line with low thymidine phosphorolysis and cytidine deamination in rat liver. Our studies suggest a co-operation of Kupffer cells, endothelial cells, and hepatocytes in the breakdown of uridine from portal vein blood with uridine phosphorolysis predominantly occurring in Kupffer cells and with uracil catabolism restricted to parenchymal liver cells.  相似文献   

2.
1. At 1h after operation livers from partially hepatectomized rats showed a 60-100% increase in the capacity to concentrate (3)H radioactivity from orotate, thymidine or uridine with respect to the radioactivity in plasma. Uptake of [(3)H]cytidine into liver was unaffected, as was entry of any precursor studied into any tissue other than liver. 2. This increase in intracellular radioactivity was detectable 10min after operation with both orotate and thymidine. With orotate the augmentation had disappeared by 3 days, but with thymidine it was still evident 8 days after partial hepatectomy, when [(3)H]thymidine incorporation into DNA was no longer increased. Competition studies established that orotate was not entering the liver by the same mechanism as thymidine. 3. In the soluble fraction of the liver all the (3)H radioactivity from orotate was present as uridine nucleotides. Thymidine was not phosphorylated, and was believed to be catabolized.  相似文献   

3.
The radioactivity of RNA, DNA and proteins in the liver, muscles and cerebrum of 30-day-old rats after labelling with [3H]uridine, [14C]uridine, [3H]cytidine or [3H]orotic acid was measured. It was found that after administration of [3H]uridine, the proteins were 5 - 10 times more radioactive than the RNA. After administration of [14C]uridine, the proteins were 1 - 2 times more heavily labelled than the RNA. Hydrolysis of the proteins followed by chromatography of the amino acids revealed that the protein labelling was mostly due to [3H]glutamate. In the liver, [3H]orotic acid produced very specific labelling of the RNA. The radioactivity of the proteins is very slight. However, the specific labelling of the RNA in the muscles and cerebrum is not so pronounced with this precursor. [3H]Cytidine is an ideal precursor for RNA. The labelling of protein in all three organs examined is very slight, and furthermore, the specific activity of the RNA is 10 - 20 times higher than after labelling with uridine. We were also able to show that after labelling with radioactive uridine, the method of isolation of RNA by alkaline hydrolysis gives incorrect results, because [3H]amino acids interfere with the measurement of the specific activity of the RNA. The heavy labelling of proteins by [3H]-uridine must also be taken into account in histoautoradiography, because our experiments showed that in liver, the proteins in the cell nucleus are 3 times as radioactive as the nucleic acids. The particulate components of the cytoplasm are even 20 times more radioactive than the nucleic acids.  相似文献   

4.
[3H]uridine and [3H]orotic acid were equally utilized for labelling of RNA in mouse liver. Incorporation of [3H]cytidine was 2-3 times as high as that of [3H]-labelled uridine or orotic acid. These results differ from findings in rat liver, where both cytidine and orotic acid are better utilized for RNA labelling than is uridine. The ratio between liver RNA [3H]-activity and volatile [3H]-activity was 2, 3 and 13, respectively, at 300 min after injection of labelled uridine, orotic acid and cytidine, indicating an efficient chanelling of cytidine into liver anabolic pathways.  相似文献   

5.
Nucleoside transporter (NT) plays key roles in the physiology of nucleosides and the pharmacology of its analogues in mammals. We previously cloned Na+/nucleoside cotransporter CNT2 from mouse M5076 ovarian sarcoma cells, the peptide encoded by it differing from that by the previously reported mouse CNT2 in five substitutions, and observed that the transporter can take up cytidine, like CNT1 and CNT3. In the present study, we examined which of the two aforementioned CNT2 is the normal one, and whether or not cytidine is transported via the previously reported CNT2. The peptide encoded by CNT2 derived from mouse intestine, liver, spleen, and ovary was identical to that previously reported. The uptake of [3H]cytidine, but not [3H]thymidine, by Cos-7 cells transfected with CNT2 cDNA obtained from mouse intestine was much greater than that by mock cells, as in the case of [3H]uridine, a typical substrate of NT. [3H]Cytidine and [3H]uridine were taken up via CNT2, in temperature-, extracellular Na+-, and substrate concentration-dependent manners. The uptake of [3H]cytidine and [3H]uridine mediated by CNT2 was significantly inhibited by the variety of nucleosides used in this study, except for thymidine, and inhibition of the [3H]uridine uptake by cytidine was competitive. The [3H]uridine uptake via CNT2 was significantly decreased by the addition of cytarabin or gemcitabine, antimetabolites of cytidine analogue. These results indicated that the previously reported mouse CNT2 is the wild-type one, and cytidine is transported mediated by the same recognition site on the CNT2 with uridine, and furthermore, cytidine analogues may be substrates for the transporter.  相似文献   

6.
1. Rat lymph-node cells were incubated in serum and medium 199 with [5-(3)H]uridine or [5-(3)H]cytidine and acid-precipitable radioactivity was measured. Results were interpreted in terms of an isotope-dilution model. 2. Both serum and medium 199 contained pools that inhibited radioactive labelling in a competitive manner. The serum activity was diffusible and inhibited labelling with [(3)H]cytidine more than with [(3)H]uridine; in these respects the activity resembled cytidine (14mum). 3. The pools in serum and plasma were the same size; however, the rate of labelling was greater in plasma, owing to a diffusible factor. 4. Paradoxically, relatively simple media (Earle's salts and Eagle's minimum essential) appeared to have a larger pool than the more complex pyrimidine-containing medium 199; this suggests a contribution to the pool by cells in the simple media. 5. In the absence of pools the average cell was capable of incorporating 2000 radioactive nucleoside molecules/s.  相似文献   

7.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

8.
The pathway for the acquisition of thymidylate in the obligate bacterial parasite Rickettsia prowazekii was determined. R. prowazekii growing in host cells with or without thymidine kinase failed to incorporate into its DNA the [3H]thymidine added to the culture. In the thymidine kinase-negative host cells, the label available to the rickettsiae in the host cell cytoplasm would have been thymidine, and in the thymidine kinase-positive host cells, it would have been both thymidine and TMP. Further support for the inability to utilize thymidine was the lack of thymidine kinase activity in extracts of R. prowazekii. However, [3H]uridine incorporation into the DNA of R. prowazekii was demonstrable (973 +/- 57 dpm/3 x 10(8) rickettsiae). This labeling of rickettsial DNA suggests the transport of uracil, uridine, uridine phosphates (UXP), or 2'-deoxyuridine phosphates, the conversion of the labeled precursor to thymidylate, and subsequent incorporation into DNA. This is supported by the demonstration of thymidylate synthase activity in extracts of R. prowazekii. The enzyme was determined to have a specific activity of 310 +/- 40 pmol/min/mg of protein and was inhibited greater than or equal to 70% by 5-fluoro-dUMP. The inability of R. prowazekii to utilize uracil was suggested by undetectable uracil phosphoribosyltransferase activity and by its inability to grow (less than 10% of control) in a uridine-starved mutant cell line (Urd-A) supplemented with 50 microM to 1 mM uracil. In contrast, the rickettsiae were able to grow in Urd-A cells that were uridine starved and supplemented with 20 microM uridine (117% of control). However, no measurable uridine kinase activity could be measured in extracts of R. prowazekii. Normal rickettsial growth (92% of control) was observed when the host cell was blocked with thymidine so that the host cell's dUXP pool was depressed to a level inadequate for growth and DNA synthesis in the host cell. Taken together, these data strongly suggest that rickettsiae transport UXP from the host cell's cytoplasm and that they synthesize TTP from UXP.  相似文献   

9.
Concanavalin A-induced proliferation of rat T-lymphocytes is completely inhibited by 10?5 M pyrazofurin, a potent inhibitor of pyrimidine de novo synthesis, as judged by cell viability and [3H]thymidine incorporation. Proliferation is completely restored by 5 × 10?5 M uridine. Cytidine, deoxycytidine, deoxyuridine and thymidine 10 × 10?5 M each, fail to re-establish proliferation but produce an isotropic dilution of [3H]thymidine uptake in DNA. Bases (cytosine, uracil and thymine) neither restore proliferation nor induce isotopic dilution. The unexpected inability of cytidine to reverse de novo pyrimidine synthesis inhibition suggests a lack of cytidine deaminase activity in rat T-lymphocytes. This is confirmed by a direct sensitive radioisotopic assay (<0.001 nmol.min?1.10?6 cells).  相似文献   

10.
1. Pig lymphocytes were transformed by dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate) at concentrations of 0.01-0.1mum. The pattern of incorporation of label from [5-(3)H]uridine and [6-(3)H]thymidine into RNA and DNA respectively was identical with that obtained with unpurified phytohaemagglutinin. 2. Chlorpromazine (0.1mum) prevented the stimulation of [5-(3)H]uridine incorporation into RNA by phytohaemagglutinin, but only slightly lowered the lymphocyte response to dibutyryl cyclic AMP. 3. An increase in the size and specific radioactivity of the intracellular P(i) pool was found immediately after stimulation by both phytohaemagglutinin and dibutyryl cyclic AMP. This was followed after some 30min by a rise in the specific radioactivity and concentration of ATP. 4. There was an immediate increase in the specific radioactivity of phosphate groups of histones; by about 45min after stimulation only the histones remaining after extraction of histone fraction F1 continued to incorporate (32)P from [(32)P]P(i). 5. Histone kinase activity increased in the first 30min after stimulation; subsequently histone F1 kinase activity decreased, but activity with the other histones as substrate continued to increase for a further 30min. Kinase activation was effected by cyclic AMP (adenosine 3':5'-cyclic monophosphate). 6. Histone phosphatase activity behaved similarly to that of the kinase.  相似文献   

11.
The biosynthesis of cytidine nucleotides and the level of microsomal cytochrome P-450 in intact and regenerating rat liver after repeated administration of alpha-hexachlorocyclohexane (alpha-HCH) were compared. In alpha-HCH treated animals the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides is suppressed. In 24-h regenerating liver the incorporation of labelled orotic acid into cytidine nucleotides is markedly activated; the degree of activation is lower in regenerating livers of alpha-HCH treated animals. The changes in the level of cytochrome P-450 vary inversely with the changes in the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides. The activity of cytidine triphosphate synthetase of liver cytosol increases shortly after the administration of alpha-HCH; uridine-cytidine kinase is enhanced in the later stages of the drug action. Within 15-45 min after the administration of alpha-HCH the uptake of [U-14 C] cytidine into the liver and its incorporation into RNA cytosine are increased. After the administration of the drug the uptake of [2-14 C] uridine and its incorporation into RNA uracil is also enhanced whereas its utilization for the synthesis of cytidine nucleotides of the acid-soluble extract as well as for the RNA cytosine are suppressed.  相似文献   

12.
Ribonucleotides Linked to DNA of Herpes Simplex Virus Type 1   总被引:4,自引:4,他引:0       下载免费PDF全文
Cells of a continuous cell line derived from rabbit embryo fibroblasts were infected with herpes simplex type 1 virus (HSV-1) and maintained in the presence of either [5-(3)H]uridine or [methyl-(3)H]thymidine or (32)PO(4) (3-). Nucleocapsids were isolated from the cytoplasmic fraction, partially purified, and treated with DNase and RNase. From the pelleted nucleocapsids, DNA was extracted and purified by centrifugation in sucrose and cesium sulfate gradients. The acid-precipitable radioactivity of [5-(3)H]uridine-labeled DNA was partially susceptible to pancreatic RNase and alkaline treatment; the susceptibility to the enzyme decreased with increasing salt concentration. No drop of activity of DNA labeled with [(3)H]thymidine was observed either after RNase or alkali treatment. Base composition analysis of [5-(3)H]uridine-labeled DNA showed that the radioactivity was recovered as uracil and cytosine. In the cesium sulfate gradient, the purified [5-(3)H]uridine-labeled DNA banded at the same position as the (32)P-labeled DNA. The present data tend to suggest that ribonucleotide sequences are present in HSV DNA, that they are covalently attached to the viral DNA, and that they can form double-stranded structures.  相似文献   

13.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

14.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

15.
Pyrimidine salvage pathways are vital for all bacteria in that they share in the synthesis of RNA with the biosynthetic pathway in pyrimidine prototrophs, while supplying all pyrimidine requirements in pyrimidine auxotrophs. Salvage enzymes that constitute the pyrimidine salvage pathways were studied in 13 members of Pseudomonas and former pseudomonads. Because it has been established that all Pseudomonas lack the enzyme uridine/cytidine kinase (Udk) and all contain uracil phosphoribosyl transferase (Upp), these two enzymes were not included in this experimental work. The enzymes assayed were: cytosine deaminase [Cod: cytosine + H2O → uracil + NH3], cytidine deaminase [Cdd: cytidine + H2O → uridine + NH3], uridine phosphorylase [Udp: uridine + Pi ↔ uracil + ribose – 1 - P], nucleoside hydrolase [Nuh: purine/pyrimidine nucleoside + H2O → purine/pyrimidine base + ribose], uridine hydrolase [Udh: uridine/cytidine + H2O → uracil/cytosine + ribose]. The assay work generated five different Pyrimidine Salvage Groups (PSG) designated PSG1 – PSG5 based on the presence or absence of the five enzymes. These enzymes were assayed using reverse phase high-performance liquid chromatography techniques routinely carried out in our laboratory. Escherichia coli was included as a standard, which contains all seven of the above enzymes.  相似文献   

16.
Intact cells and cell-free extracts of E. coli convert isocytidine to isocytosine and uracil. The radioactive label of 5-[3H]isocytidine is incorporated into RNA and, DNA of growing bacteria at a rate equal to about 1.4% of that of cytidine under similar conditions; the radioactivity is found in uridylic, cytidylic and 2′-deoxythymidylic acids, while less than 0.4% of incorporated radioactive material might be due to possible incorporation of intact isocytidine. Uridine phosphorylase and cytidine deaminase apparently do not participate in the metabolic conversion of isocytidine.  相似文献   

17.
[2-14C]-uridine is rapidly taken up by sycamore cells in suspensionculture. A proportion of the radioactivity enters RNA withoutmeasurable delay, whilst the remainder equilibrates with a largepool of phosphorylated compounds, the major radioactive componentof which is 5'-UMP. Both the uracil and cytosine residues ofRNA receive label from [14C]-uridine and, when the cells aresupplied with high concentrations of uridine, these bases arederived almost exclusively from the nucleoside. [14C]-uridine is incorporated into RNA at all stages of thegrowth cycle of batch cultures; its continuing incorporation,when the total RNA content of the cells is rapidly decreasing,indicates a high rate of turnover of the total RNA. Long-termlabelling experiments also indicate turnover of RNA during thephase of active cell division and suggest that a large proportionof the degradation products are not re-utilized for RNA synthesis. Sycamore cells degrade [2-14C]-uridine with release of 14CO2.The proportion degraded increases from 25 per cent at an externaluridine concentration of 10–6M to 75 per cent at 10–3M. Despite this, nucleic acids are the only macromolecules thatreceive a significant amount of radioactivity from [2-14]C-uridine.  相似文献   

18.
Rat livers were perfused in a non-recirculating mode at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate, and 0.2 mM pyruvate. [3H]LTC4 was infused for a period of 5 min to a final concentration of 20 nM; it increased glucose and lactate output and reduced perfusion flow. 1) Leukotriene radioactivity was recovered 10 min after the onset of [3H]LTC4 infusion to about 40% in the effluent, to 20% in the bile, and to 40% in the liver. 2) Radioactivity in the effluent increased to a maximum 4-5 min after the onset and decreased again to essentially zero 3 min after completion of [3H]LTC4 infusion. [3H]LTC4 and [3H]LTD4 were the major labeled components in the effluent accounting for 45% and 38%, respectively, of the effluent radioactivity. 3) [3H]LTC4 and [3H]LTD4 were also the major components in bile; they accounted for 50% and 30%, respectively, of the radioactivity excreted, while more polar [3H]leukotriene metabolites accounted for the remainder. 4) In the liver, [3H]LTC4 and [3H]LTD4 were the major and [3H]LTE4, N-acetyl-[3H]LTE4 as well as omega-hydroxy-N-acetyl-[3H]LTE4 and omega-carboxy-N-acetyl-[3H]LTE4 were minor components detected 5 min after completion of [3H]LTC4 infusion. It is concluded from the present findings that during a 5 min infusion period about one third each of the infused LTC4 remained unchanged, was converted to LTD4, and was further degraded to LTE4 and polar metabolites including omega-oxidation products of N-acetyl-LTE4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A system for the measurement of the RNA-synthesis of bone marrow cells of the rat has been developed and the incorporation of [3H]-uridine into the cellular RNA has been standardized with respect to the time of incubation, the concentration of [3H]-uridine and the number of cells. A plateau of the incorporation of [3H]-uridine into the RNA is reached after 20 min of incubation and is interpreted as the expression of a steady state in synthesis and degradation of the cellular RNA. A constant labelling of the RNA is reached above 8.3 with 10(-6)M [3H]-uridine. The optimal cell number in the 500 mul standard assay is 4 with 10(6). Actinomycin D inhibits the RNA-synthesis to 94% in a concentration of 1.2 with 10(2) mug/ml. The cryoprotectants dimethylsulfoxide, polyethylene-oxide and glycerol and the potential haematotoxic substances dichlorodiphenyltrichloroethane and gamma-hexane were tested in this system. 5% dimethylsulfoxide and 10% polyethylen-oxide in Eagle's-medium with ethylendiamintetra-acetate do not influence the RNA-synthesis. 5% glycerol reduces the incorporation of [3H]-uridine into the cellular RNA to about 30%.  相似文献   

20.
The serum clearance of alpha-[3H]tocopherol has been studied after intravenous injection of intestinal lymph labeled in vivo with radioactive alpha-tocopherol. The half-life of the injected alpha-[3H]tocopherol was approx. 12 min. Fractionation of plasma by ultracentrifugation 10 min after injection of lymph showed that 91% of the radioactive alpha-tocopherol remaining in plasma was located in chylomicrons (d less than 1.006 g/ml) and 7.8% in high-density lipoproteins (HDL, 1.05 less than d less than 1.21 g/ml). 2 h after administration of alpha-tocopherol, about 35% of the radioactivity recovered in plasma was associated with chylomicrons and approx. 51% with HDLs. alpha-[3H]Tocopherol was initially taken up by the liver, which contained more than 50% of the injected radioactivity after 45-60 min. Separation of parenchymal and nonparenchymal cells demonstrated a preferential uptake of alpha-[3H]tocopherol by the parenchymal liver cells. After 24 h about 11% of the injected dose was recovered in the liver. Considering whole organs the liver, adipose tissue and skeletal muscle had the highest content of radioactivity after 24 h. Furthermore, about 14% of the administered dose was recovered in bile during 24 h draining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号