首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli chaperonins GroEL and GroES are indispensable for survival and growth of the cell since they provide essential assistance to the folding of many newly translated proteins in the cell. Recent studies indicate that a substantial portion of the proteins involved in the host pathways are completely dependent on GroEL–GroES for their folding and hence providing some explanation for why GroEL is essential for cell growth. Many proteins either small-single domain or large multidomains require assistance from GroEL–ES during their lifetime. Proteins of size up to 70 kDa can fold via the cis mechanism during GroEL–ES assisted pathway, but other proteins (>70 kDa) that cannot be pushed inside the cavity of GroEL–ATP complex upon binding of GroES fold by an evolved mechanism called trans. In recent years, much work has been done on revealing facts about the cis mechanism involving the GroEL assisted folding of small proteins whereas the trans mechanism with larger polypeptide substrates still remains under cover. In order to disentangle the role of chaperonin GroEL–GroES in the folding of large E. coli proteins, this review discusses a number of issues like the range of large polypeptide substrates acted on by GroEL. Do all these substrates need the complete chaperonin system along with ATP for their folding? Does GroEL act as foldase or holdase during the process? We conclude with a discussion of the various queries that need to be resolved in the future for an extensive understanding of the mechanism of GroEL mediated folding of large substrate proteins in E. coli cytosol.  相似文献   

2.
Previously, we reported that the ATPase activity of GroEL that requires potassium and magnesium was highly temperature dependent in the 25–60 °C range. Here, we report that the monovalent cations, rubidium and ammonium were able to fully substitute for potassium; while the divalent cations manganese, cobalt, and nickel supported the ATPase activity of GroEL albeit to a lesser degree than magnesium. ATPase activities with manganese, cobalt, and nickel were 64%, 41%, and 29%, respectively, of the maximum activity (100%) when utilizing magnesium. Interestingly, the ability of all the cations to support the GroEL ATPase activity was somewhat consistent over the entire 25–60 °C range. Maximum ATPase activities were observed at 49 °C. Here, the influence of these cations on the thermal denaturation of GroEL was also monitored using bisANS binding as an indication of the exposure of hydrophobic surfaces during thermal denaturation of GroEL. Maximum exposure of hydrophobic surfaces on GroEL alone or in the presence of each of the monovalent cations was determined to occur at 65 °C. However, the maximum exposure of hydrophobic surfaces on GroEL in the presence of magnesium, manganese, cobalt or nickel was found to occur at 71 °C indicating that GroEL is significantly stabilized against thermal denaturation by these divalent cations.  相似文献   

3.
The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL-rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions.  相似文献   

4.
The extent of hydrophobic exposure upon bis-ANS binding to the functional apical domain fragment of GroEL, or minichaperone (residues 191-345), was investigated and compared with that of the GroEL tetradecamer. Although a total of seven molecules of bis-ANS bind cooperatively to this minichaperone, most of the hydrophobic sites were induced following initial binding of one to two molecules of probe. From the equilibrium and kinetics studies at low bis-ANS concentrations, it is evident that the native apical domain is converted to an intermediate conformation with increased hydrophobic surfaces. This intermediate binds additional bis-ANS molecules. Tyrosine fluorescence detected denaturation demonstrated that bis-ANS can destabilize the apical domain. The results from (i) bis-ANS titrations, (ii) urea denaturation studies in the presence and absence of bis-ANS, and (iii) intrinsic tyrosine fluorescence studies of the apical domain are consistent with a model in which bis-ANS binds tightly to the intermediate state, relatively weakly to the native state, and little to the denatured state. The results suggest that the conformational changes seen in apical domain fragments are not seen in the intact GroEL oligomer due to restrictions imposed by connections of the apical domain to the intermediate domain and suppression of movement due to quaternary structure.  相似文献   

5.
When the enzyme rhodanese was inactivated with hydrogen peroxide (H(2)O(2)), it underwent significant conformational changes, leading to an increased exposure of hydrophobic surfaces. Thus, this protein seemed to be an ideal substrate for GroEL, since GroEL uses hydrophobic interactions to bind to its substrate polypeptides. Here, we report on the facilitated reactivation (86%) of H(2)O(2)-inactivated rhodanese by GroEL alone. Reactivation by GroEL required a reductant and the enzyme substrate, but not GroES or ATP. Further, we found that GroEL interacted weakly and/or transiently with H(2)O(2)-inactivated rhodanese. A strong interaction with rhodanese was obtained when the enzyme was pre-incubated with urea, indicating that exposure of hydrophobic surfaces alone on oxidized rhodanese was not sufficient for the formation of a strong complex and that a more unfolded structure of rhodanese was required to interact strongly with GroEL. Unlike prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that GroEL can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein. Additionally, the mechanism for the GroEL-facilitated reactivation of rhodanese shown here appears to be different than that for the chaperonin-assisted folding of chemically unfolded polypeptides in which a nucleotide and sometimes GroES is required.  相似文献   

6.
The interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) with GroEL has been studied by electron paramagnetic resonance (EPR) and fluorescence spectroscopy. In the native protein, the spin probe was immobilized when attached to Cys166 at the domain interface, but was fully mobile when introduced at Cys(−19) in the N-terminal presequence peptide. Unfolding of the protein resulted in a highly mobile EPR spectrum for probes introduced at either site. However, the nitroxide group in GroEL-bound pmAAT showed either intermediate or high mobility depending on the spin probe used. Power saturation experiments indicated that the accessibility of the nitroxide side chain to Ni(EDDA) in the GroEL–pmAAT complex was higher than in the native state when in position 166 but lower when at position −19. Similar results were obtained in fluorescence quenching experiments. These data suggest that GroEL binds partly folded states of pmAAT with the presequence peptide probably in direct contact with GroEL. GroES and ATP, but not AMP–PNP or ADP, support refolding of pmAAT. During refolding, the rate of recovery of the native spectroscopic properties of labeled Cys166 is nearly identical to the rate-limiting reactivation step. Thus, correct docking of the large and small domains of pmAAT may be a key structural event in the regain of catalytic activity.  相似文献   

7.
The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.  相似文献   

8.
Different concentrations of ATP were mixed rapidly with single-ring or double-ring forms of GroEL containing the Phe44-->Trp mutation and the time-resolved changes in fluorescence emission, upon excitation at 295 nm, were followed. Two kinetic phases that were previously found for double-ring GroEL are also observed in the case of the single-ring version: (i) a fast phase with a relatively large amplitude that is associated with the T-->R allosteric transition; (ii) and a slow phase with a smaller amplitude that is associated with ATP hydrolysis. In the case of weak intra-ring positive cooperativity, the rate constant corresponding to the T-->R allosteric switch of single-ring GroEL displays a bi-sigmoidal dependence on ATP concentration that may reflect parallel pathways of the allosteric transition. The slow phase is absent when double-ring or single-ring forms of GroEL are mixed with ADP or ATP without K(+), and it has a rate constant that is independent of ATP concentration. A third fast phase that is still unassigned is observed for both single-ring and double-ring GroEL when a large amount of data is collected. Finally, a fourth phase is observed in the case of double-ring GroEL that is found to be absent in the case of single-ring GroEL. This phase is here assigned to inter-ring communication by (i) determining its dependence on ATP concentration and (ii) based on its absence from single-ring GroEL and the Arg13-->Gly, Ala126-->Val GroEL mutant, which is defective in inter-ring negative cooperativity. The value of the rate constant corresponding to this phase is found to increase with increasing intra-ring positive cooperativity, with respect to ATP. This is the first report of the rate of ATP-mediated inter-ring communication in GroEL, in the presence of ATP alone, which is crucial for the cycling of this molecular machine between different functional states.  相似文献   

9.
The chaperonin GroEL binds nonnative substrate protein in the central cavity of an open ring through exposed hydrophobic residues at the inside aspect of the apical domains and then mediates productive folding upon binding ATP and the cochaperonin GroES. Whether nonnative proteins bind to more than one of the seven apical domains of a GroEL ring is unknown. We have addressed this using rings with various combinations of wild-type and binding-defective mutant apical domains, enabled by their production as single polypeptides. A wild-type extent of binary complex formation with two stringent substrate proteins, malate dehydrogenase or Rubisco, required a minimum of three consecutive binding-proficient apical domains. Rhodanese, a less-stringent substrate, required only two wild-type domains and was insensitive to their arrangement. As a physical correlate, multivalent binding of Rubisco was directly observed in an oxidative cross-linking experiment.  相似文献   

10.
The double ring-shaped chaperonin GroEL binds a wide range of non-native polypeptides within its central cavity and, together with its cofactor GroES, assists their folding in an ATP-dependent manner. The conformational cycle of GroEL/ES has been studied extensively but little is known about how the environment in the central cavity affects substrate conformation. Here, we use the von Hippel-Lindau tumor suppressor protein VHL as a model substrate for studying the action of the GroEL/ES system on a bound polypeptide. Fluorescent labeling of pairs of sites on VHL for fluorescence (Förster) resonant energy transfer (FRET) allows VHL to be used to explore how GroEL binding and GroEL/ES/nucleotide binding affect the substrate conformation. On average, upon binding to GroEL, all pairs of labeling sites experience compaction relative to the unfolded protein while single-molecule FRET distributions show significant heterogeneity. Upon addition of GroES and ATP to close the GroEL cavity, on average further FRET increases occur between the two hydrophobic regions of VHL, accompanied by FRET decreases between the N- and C-termini. This suggests that ATP- and GroES-induced confinement within the GroEL cavity remodels bound polypeptides by causing expansion (or racking) of some regions and compaction of others, most notably, the hydrophobic core. However, single-molecule observations of the specific FRET changes for individual proteins at the moment of ATP/GroES addition reveal that a large fraction of the population shows the opposite behavior; that is, FRET decreases between the hydrophobic regions and FRET increases for the N- and C-termini. Our time-resolved single-molecule analysis reveals the underlying heterogeneity of the action of GroES/EL on a bound polypeptide substrate, which might arise from the random nature of the specific binding to the various identical subunits of GroEL, and might help explain why multiple rounds of binding and hydrolysis are required for some chaperonin substrates.  相似文献   

11.
A comparative analysis of the temperature dependence of energy-transducing reactions in spinach (Spinacia oleracea) chloroplasts and their sensitivity for uncouplers and energy-transfer inhibitors at different temperatures is presented. Arrhenius plots reveal two groups of transitions, around 19°C and around 12°C. Activities that show transitions around 19°C include linear electron flow from water to ferricyanide, its coupled photophosphorylation, the dark-release of the fluorescent probe atebrin, and the slow component of the 515 nm (carotenoid) absorbance decay after a flash. The transitions around 12°C are observed with pyocyanine-mediated cyclic photophosphorylation, light- and dithioerythritol-activated ATP hydrolysis, the dark-release of protons, and the fast 515 nm decay component. It is suggested that both groups of temperature transitions are determined by proton displacements in different domains of the exposed thylakoid membranes. The effects of various uncouplers and an energy-transfer inhibitor are temperature dependent. Some uncouplers also show a different relative inhibition of proton uptake and ATP synthesis at lower temperatures. The efficiency of energy transduction (ATP/e2) varied with temperature and was optimal around 10°C.  相似文献   

12.
Folding of malate dehydrogenase inside the GroEL-GroES cavity   总被引:1,自引:0,他引:1  
The chaperonin GroEL binds nonnative substrate protein in the hydrophobic central cavity of an open ring. ATP and GroES binding to the same ring converts this cavity into an encapsulated, hydrophilic chamber that mediates productive folding. A 'rack' mechanism of initial protein unfolding proposes that, upon GroES and ATP binding, the polypeptide is stretched between the binding sites on the twisting apical domains of GroEL before complete release into the chamber. Here, the structure of malate dehydrogenase (MDH) subunit during folding is monitored by deuterium exchange, peptic fragment production and mass spectrometry. When bound to GroEL, MDH exhibits a core of partially protected secondary structure that is only modestly deprotected upon ATP and GroES binding. Moreover, deprotection is broadly distributed throughout MDH, suggesting that it results from breaking hydrogen bonds between MDH and the cavity wall or global destabilization, as opposed to forced mechanical unfolding.  相似文献   

13.
Recent structural and functional studies have greatly advanced our understanding of the mechanism by which chaperonins (Cpn60) mediate protein folding, the final step in the accurate expression of genetic information. Escherichia coli GroEL has a symmetric double-toroid architecture, which binds nonnative polypeptide substrates on the hydrophobic walls of its central cavity. The asymmetric binding of ATP and cochaperonin GroES to GroEL triggers a major conformational change in the cis ring, creating an enlarged chamber into which the bound nonnative polypeptide is released. The structural changes that create the cis assembly also change the lining of the cavity wall from hydrophobic to hydrophilic, conducive to folding into the native state. ATP hydrolysis in the cis ring weakens it and primes the release of products. When ATP and GroES bind to the trans ring, it forms a stronger assembly, which disassembles the cis complex through negative cooperativity between rings. The opposing function of the two rings operates as if the system had two cylinders, one expelling the products of the reaction as the other loads up the reactants. One cycle of the reaction gives the polypeptide about 15 s to fold at the cost of seven ATP molecules. For some proteins, several cycles of GroEL assistance may be needed in order to achieve their native states.  相似文献   

14.
Apo-aconitase, the Fe4S4 cluster free form of TCA cycle enzyme aconitase, binds with GroEL and dissociates itself upon maturation through insertion of the cluster. It is not clearly established as to why apo-protein binds with GroEL. In order to explore the possibility that stability is a factor responsible for the aggregation of apo-form at low ionic strengths and hence it associates with GroEL to avoid the unfavorable event, we carried out the unfolding studies with holo- and apo-aconitase. By probing the unfolding process through the changes in secondary structural element, exposed surface hydrophobicity, and the microenvironment around tryptophan residues, we were able to establish the relevant changes associated with the event. Apparent guanidine hydrochloride concentration required for unfolding of 50% of aconitase indicates that aconitase is destabilized in the absence of the Fe4S4 cluster. The destabilization of the apo-aconitase was further reflected through its three times higher rate of unfolding as compared to the holo-protein. It was also observed that the apo-form has higher surface hydrophobicity than the holo-form. Hence, the lower ground state stability and higher solvent exposed hydrophobic surface of the apo-form makes it aggregation prone. Based on the present observation and earlier findings, we propose that binding of apo-aconitase to GroEL not only rescues it from the aggregation, but also assists in the final stage of maturation by orienting the cluster insertion site of GroEL bound apo-protein. This information sheds new light on the potential role of GroEL in the biosynthetic pathway of the metallo proteins.  相似文献   

15.
The inactivation and conformational changes of the bacterial chaperonin GroEL have been studied in SDS solutions with different concentrations. The results show that increasing the SDS concentration caused the intrinsic fluorescence emission intensity to increase and the emission peak to slightly blue-shift, indicating that increasing the SDS concentration can cause the hydrophobic surface to be slightly buried. The changes in the ANS-binding fluorescence with increasing SDS concentration also showed that the GroEL hydrophobic surface decreased. At low SDS concentrations, less than 0.3 mM, the GroEL ATPase activity increased with increasing SDS concentration. Increasing the SDS concentration beyond 0.3 mM caused the GroEL ATPase activity to quickly decrease. At high SDS concentrations, above 0.8 mM, the residual GroEL ATPase activity was less than 10% of the original activity, but the GroEL molecule maintained its native conformation (as indicated by the exposure of buried thiol groups, electrophoresis, and changes of CD spectra). The above results suggest that the conformational changes of the active site result in the inactivation of the ATPase even though the GroEL molecule does not markedly unfold at low SDS concentrations.  相似文献   

16.
The binding of denatured B. stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the E. coli chaperonin GroEL was investigated in two systems: (1) GroEL immobilized on Sepharose via a single subunit was titrated with urea-denatured soluble GAPDH and (2) a Sepharose-bound denatured GAPDH monomer was titrated with soluble GroEL. Similar apparent K D values for the complex GroEL·GAPDH were obtained in both cases (0.04 and 0.03 M, respectively), the stoichiometry being 1.0 mol chaperonin per GAPDH subunit in the system with the immobilized GroEL and 0.2 mol chaperonin per Sepharose-bound GAPDH monomer. Addition of GroEL and Mg·ATP to a reactivation mixture increased the yield of reactivation of both E. coli and B. stearothermophilus GAPDHs. Incubation of the Sepharose-bound catalytically active tetrameric and dimeric GAPDH forms with the protein fraction of a wild-type E. coli cell extract resulted in the binding of GroEL to the dimer and no interaction with the tetrameric form. These data suggest that GroEL may be capable of interacting with the interdimeric contact regions of the folded GAPDH dimers.  相似文献   

17.
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.  相似文献   

18.
Zusammenfassung Die Schreckstoffzellen der Elritze,Phoxinus phoxinus (L.), zeigen nach Gefriertrocknung der Haut eine Eigenfluoreszenz. Diese wird bei 360–380 nm maximal angeregt; das Emissionsmaximum liegt bei ca. 515 nm. Die Fluoreszenz einer Schreckstoffzelle wird mit der Fluoreszenz des isolierten Schreckstoffes mikrospektralphotofluorimetrisch verglichen: die Emissions-maxima liegen nur 10 nm voneinander entfernt. Die Kurven relativer Fluoreszenzintensität verlaufen weitgehend gleichartig. Dies zeigt, daß der Schreckstoff tatsächlich den Schreckstoffzellen entstammt.
Fluorescence microscopical demonstration of the alarm substance in the alarm substance cells of the European minnow,Phoxinus phoxinus (L.) (cyprinidae, ostariophysi, pisces)
Summary The alarm substance cells of the European minnow,Phoxinus phoxinus (L.), are autofluorescent after freeze-drying of the skin (Fig. 1). Their autofluorescence is maximally excited at 360–380 nm; the maximum of emission lies at about 515 nm. The fluorescence of an alarm substance cell is compared with the autofluorescence of the isolated alarm substance by means of a microspectro-photofluorometer. The maxima of emission are only about 10 nm apart. The curves of relative fluorescence intensity are almost identical (Fig. 3). These results show that the alarm substance actually comes from the alarm substance cells.


Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

19.
Chaperonins are megadalton ring assemblies that mediate essential ATP-dependent assistance of protein folding to the native state in a variety of cellular compartments, including the mitochondrial matrix, the eukaryotic cytosol, and the bacterial cytoplasm. Structural studies of the bacterial chaperonin, GroEL, both alone and in complex with its co-chaperonin, GroES, have resolved the states of chaperonin that bind and fold non-native polypeptides. Functional studies have resolved the action of ATP binding and hydrolysis in driving the GroEL-GroES machine through its folding-active and binding-active states, respectively. Yet the exact fate of substrate polypeptide during these steps is only poorly understood. For example, while binding involves multivalent interactions between hydrophobic side-chains facing the central cavity of GroEL and exposed hydrophobic surfaces of the non-native protein, the structure of any polypeptide substrate while bound to GroEL remains unknown. It is also unclear whether binding to an open GroEL ring is accompanied by structural changes in the non-native substrate, in particular whether there is an unfolding action. As a polypeptide-bound ring becomes associated with GroES, do the large rigid-body movements of the GroEL apical domains serve as another source of a potential unfolding action? Regarding the encapsulated folding-active state, how does the central cavity itself influence the folding trajectory of a substrate? Finally, how do GroEL and GroES serve, as recently recognized, to assist the folding of substrates too large to be encapsulated inside the machine? Here, such questions are addressed with the findings available to date, and means of further resolving the states of chaperonin-associated polypeptide are discussed.  相似文献   

20.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼150 h (∼6 days), providing a good model to characterize the football-shaped complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号