首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fabrication and operation of a gradient-generating microfluidic device for studying cellular behavior is described. A microfluidic platform is an enabling experimental tool, because it can precisely manipulate fluid flows, enable high-throughput experiments, and generate stable soluble concentration gradients. Compared to conventional gradient generators, poly(dimethylsiloxane) (PDMS)-based microfluidic devices can generate stable concentration gradients of growth factors with well-defined profiles. Here, we developed simple gradient-generating microfluidic devices with three separate inlets. Three microchannels combined into one microchannel to generate concentration gradients. The stability and shape of growth factor gradients were confirmed by fluorescein isothyiocyanate (FITC)-dextran with a molecular weight similar to epidermal growth factor (EGF). Using this microfluidic device, we demonstrated that fibroblasts exposed to concentration gradients of EGF migrated toward higher concentrations. The directional orientation of cell migration and motility of migrating cells were quantitatively assessed by cell tracking analysis. Thus, this gradient-generating microfluidic device might be useful for studying and analyzing the behavior of migrating cells.  相似文献   

2.
The directed migration of cells towards chemical stimuli incorporates simultaneous changes in both the concentration of a chemotactic agent and its concentration gradient, each of which may influence cell migratory response. In this study, we utilized a microfluidic system to examine the interactions between epidermal growth factor (EGF) concentration and EGF gradient in stimulating the chemotaxis of connective tissue-derived fibroblast cells. Cells seeded within microfluidic devices were exposed to concentration gradients established by EGF concentrations that matched or exceeded those required for maximum chemotactic responses seen in transfilter migration assays. The migration of individual cells within the device was measured optically after steady-state gradients had been experimentally established. Results illustrate that motility was maximal at EGF concentration gradients between .01- and 0.1-ng/(mL.mm) for all concentrations used. In contrast, the number of motile cells continually increased with increasing gradient steepness for all concentrations examined. Microfluidics-based experiments exposed cells to minute changes in EGF concentration and gradient that were in line with the acute EGFR phosphorylation measured. Correlation of experimental data with established mathematical models illustrated that the fibroblasts studied exhibit an unreported chemosensitivity to minute changes in EGF concentration, similar to that reported for highly motile cells, such as macrophages. Our results demonstrate that shallow chemotactic gradients, while previously unexplored, are necessary to induce the rate of directed cellular migration and the number of motile cells in the connective tissue-derived cells examined.  相似文献   

3.
Chemokine-mediated directed tumor cell migration within a three dimensional (3D) matrix, or chemoinvasion, is an important early step in cancer metastasis. Despite its clinical importance, it is largely unknown how cytokine and growth factor gradients within the tumor microenvironment regulate chemoinvasion. We studied tumor cell chemoinvasion in well-defined and stable chemical gradients using a robust 3D microfluidic model. We used CXCL12 (also known as SDF-1α) and epidermal growth factor (EGF), two well-known extracellular signaling molecules that co-exist in the tumor microenvironment (e.g. lymph nodes or intravasation sites), and a malignant breast tumor cell line, MDA-MB-231, embedded in type I collagen. When subjected to SDF-1α gradients alone, MDA-MB-231 cells migrated up the gradient, and the measured chemosensitivity (defined as the average cell velocity along the direction of the gradient) followed the ligand – receptor (SDF-1α – CXCR4) binding kinetics. On the other hand, when subjected to EGF gradients alone, tumor cells increased their overall motility, but without statistically significant chemotactic (directed) migration, in contrast to previous reports using 2D chemotaxis assays. Interestingly, we found that the chemoinvasive behavior to SDF-1α gradients was abrogated or even reversed in the presence of uniform concentrations of EGF; however, the presence of SDF-1α and EGF together modulated tumor cell motility cooperatively. These findings demonstrate the capabilities of our microfluidic model in re-creating complex microenvironments for cells, and the importance of cooperative roles of multiple cytokine and growth factor gradients in regulating cell migration in 3D environments.  相似文献   

4.
We have developed a perfusion bioreactor system that allows the formation of steady state oxygen gradients in cell culture. In this study, gradients were formed in cultures of rat hepatocytes to study the role of oxygen in modulating cellular functions. A model of oxygen transport in our flat-plate reactor was developed to estimate oxygen distribution at the cell surface. Experimental measurements of outlet oxygen concentration from various flow conditions were used to validate model predictions. We showed that cell viability was maintained over a 24-h period when operating with a physiologic oxygen gradient at the cell surface from 76 to 5 mmHg O(2) at the outlet. Oxygen gradients have been implicated in the maintenance of regional compartmentalized metabolic and detoxification functions in the liver, termed zonation. In this system, physiologic oxygen gradients in reactor cultures contributed to a heterogeneous distribution of phosphoenolpyruvate carboxykinase (predominantly localized upstream) and cytochrome p450 2B (predominantly localized downstream) that correlates with the distribution of these enzymes in vivo. The oxygen gradient chamber provides a means of probing the oxygen effects in vitro over a continuous range of O(2) tensions. In addition, this system serves as an in vitro model of zonation that could be further extended to study the role of gradients in ischemia-reperfusion injury, toxicity, and bioartificial liver design.  相似文献   

5.
For clinical utility, cardiac grafts should be thick and compact, and contain physiologic density of metabolically active, differentiated cells. This involves the need to control the levels of nutrients, and most critically oxygen, throughout the construct volume. Most culture systems involve diffusional transport within the constructs, a situation associated with gradients of oxygen concentration, cell density, cell viability, and function. The goal of our study was to measure diffusional gradients of oxygen in statically cultured cardiac constructs, and to correlate oxygen gradients to the spatial distributions of cell number and cell viability. Using microelectrodes, we measured oxygen distribution in a disc-shaped constructs (3.6 mm diameter, 1.8 mm thickness) based on neonatal rat cardiomyocytes cultured on collagen scaffolds for 16 days in static dishes. To rationalize experimental data, a mathematical model of oxygen distribution was derived as a function of cell density, viability, and spatial position within the construct. Oxygen concentration and cell viability decreased linearly and the live cell density decreased exponentially with the distance from the construct surface. Physiological density of live cells was present only within the first 128 microm of the construct thickness. Medium flow significantly increased oxygen concentration within the construct, correlating with the improved tissue properties observed for constructs cultured in convectively mixed bioreactors.  相似文献   

6.
Tumors and multicellular tumor spheroids can develop gradients in oxygen concentration, glucose concentration, and extracellular pH as they grow. In order to calculate these gradients and assess their impact on tumor growth, it is necessary to quantify the effect of these variables on tumor cell metabolism and growth. In this work, the oxygen consumption rates, glucose consumption rates, and growth rates of EMT6/Ro mouse mammary tumor cells were measured at a variety of oxygen concentrations, glucose concentrations, and extracellular pH levels. At an extracellular pH of 7.25, the oxygen consumption rate of EMT6/Ro cells increased by nearly a factor of 2 as the glucose concentration was decreased from 5.5 mM to 0.4 mM. This effect of glucose concentration on oxygen consumption rate, however, was slight at an extracellular pH of 6.95 and disappeared completely at an extracellular pH of 6.60. The glucose consumption rate of EMT6/Ro cells increased by roughly 40% when the oxygen concentration was reduced from 0.21 mM to 0.023 mM and decreased by roughly 60% when the extracellular pH was decreased from 7.25 to 6.95. The growth rate of EMT6/Ro cells decreased with decreasing oxygen concentration and extracellular pH; however, severe conditions were required to stop cell growth (0.0082 mM oxygen and an extracellular pH of 6.60). Empirical correlations were developed from these data to express EMT6/Ro cell growth rates, oxygen consumption rates, and glucose consumption rates, as functions of oxygen concentration, glucose concentration, and extracellular pH. These empirical correlations make it possible to mathematically model the gradients in oxygen concentration, glucose concentration, and extracellular pH in EMT6/Ro multicellular spheroids by solution of the diffusion/reaction equations. Computations such as these, along with oxygen and pH microelectrode measurements in EMT6/Ro multicellular spheroids, indicated that nutrient concentration and pH levels in the inner regions of spheroids were low enough to cause significant changes in nutrient consumption rates and cell growth rates. However, pH and oxygen concentrations measured or calculated in EMT6/Ro spheroids where quiescent cells have been observed were not low enough to cause the cessation of cell growth, indicating that the observed quiescence must have been due to factors other than acidic pH, oxygen depletion, or glucose depletion.  相似文献   

7.
Chemotaxis, directed cell migration in a gradient of chemoattractant, is an important biological phenomenon that plays pivotal roles in cancer metastasis. Newly developed microfluidic chemotaxis chambers (MCC) were used to study chemotaxis of metastatic breast cancer cells, MDA-MB-231, in EGF gradients of well-defined profiles. Migration behaviors of MDA-MB-231 cells in uniform concentrations of EGF (0, 25, 50, and 100 ng/ml) and EGF (0-25, 0-50, and 0-100 ng/ml) with linear and nonlinear polynomial profiles were investigated. MDA-MB-231 cells exhibited increased speed and directionality upon stimulation with uniform concentrations of EGF. The cells were viable and motile for over 24 h, confirming the compatibility of MCC with cancer cells. Linear concentration gradients of different ranges were not effective in inducing chemotactic movement as compared to nonlinear gradients. MDA-MB-231 cells migrating in EGF gradient of 0-50 ng/ml nonlinear polynomial profile exhibited marked directional movement toward higher EGF concentration. This result suggests that MDA-MB-231 cancer cell chemotaxis depends on the shape of gradient profile as well as on the range of EGF concentrations.  相似文献   

8.
A medium consisting of a rich basal nutrient mixture supplemented with bovine insulin (10 micrograms/ml), human transferrin (10 micrograms/ml), human cold-insoluble globulin (5 micrograms/ml), and ethanolamine (0.5 mM) supported the growth of the A431 human epidermoid cell line in the absence of serum with a generation time equal to that of cells in serum-containing medium. Addition of epidermal growth factor (EGF) to this culture medium at concentration mitogenic for other cell types resulted in a marked inhibition of A431 cell growth. Inhibitory effects of EGF were observed at 1 ng/ml and near-maximal effects were observed at 10 ng/ml. The inhibitory effect of EGF could be reversed by the omission of EGF in subsequent medium changes and could be prevented by the addition of anti-EGF antibody to the culture medium. Inhibition of A431 cell growth by EGF also could be demonstrated in serum-containing medium.  相似文献   

9.
Morphological studies have indicated divergent pathways for the endocytosis of epidermal growth factor (EGF) and transferrin (Tf). In order to obtain biochemical evidence for the pathways associated with the endocytosis of EGF and Tf, a series of Percoll density gradients were employed to separate individual cellular components. Subcellular fractionation of murine fibroblasts exposed to a 2-min pulse of either 125I-Tf or 125I-EGF results in the detection of a total of six cellular compartments related to the internalization process of these ligands. The results of kinetic analysis of the entry of EGF into five membranous fractions is consistent with a model in which ligand is transferred sequentially from the plasma membrane through three distinct prelysosomal environments prior to reaching secondary lysosomes. Each prelysosomal compartment exhibits distinct density and temporal properties in a Percoll density gradient and may represent preexisting endocytic vesicles and/or specific domains of a continuous tubular structure, vesicularized during the process of cell disruption. In addition, the observed differential migration on Percoll density gradients of Tf and EGF containing compartments indicates that the majority of cell bound Tf segregates from EGF and enters a compartment lacking EGF within 5 min of internalization.  相似文献   

10.
Recently developed perfusion micro-bioreactors offer the promise of more physiologic in vitro systems for tissue engineering. Successful application of such bioreactors will require a method to characterize the bioreactor environment required to elicit desired cell function. We present a mathematical model to describe nutrient/growth factor transport and cell growth inside a microchannel bioreactor. Using the model, we first show that the nature of spatial gradients in nutrient concentration can be controlled by both design and operating conditions and are a strong function of cell uptake rates. Next, we extend our model to investigate the spatial distributions of cell-secreted soluble autocrine/paracrine growth factors in the bioreactor. We show that the convective transport associated with the continuous cell culture and possible media recirculation can significantly alter the concentration distribution of the soluble signaling molecules as compared to static culture experiments and hence needs special attention when adapting static culture protocols for the bioreactor. Further, using an unsteady state model, we find that spatial gradients in nutrient/growth factor concentrations can bring about spatial variations in the cell density distribution inside the bioreactor, which can result in lowered working volume of the bioreactor. Finally, we show that the nutrient and spatial limitations can dramatically affect the composition of a co-cultured cell population. Our results are significant for the development, design, and optimization of novel micro-channel systems for tissue engineering.  相似文献   

11.
Human epidermoid carcinoma A431 cell clones have been obtained whose growth is inhibited, stimulated, or unaffected by epidermal growth factor (EGF). In clones exhibiting each type of growth response, EGF induced similar morphologic changes consisting of aggregation of cells into dense clusters with baring of large areas of the culture dish. The similarity of the clones' morphologic responses, despite their differing growth responses, indicates that the effects of EGF on morphology are distinct from effects on growth. Cells whose growth was inhibited by EGF contained high numbers of EGF receptors, whereas the concentration of EGF receptors was reduced in cells whose growth was stimulated or unaffected by EGF. There were, however, no consistent differences in EGF receptor concentrations between stimulated or null clones. Cells that exhibited each type of growth response displayed similar rates of EGF binding to receptors, rates of internalization of EGF, and rates and extent of EGF-induced receptor down-regulation. Changes in EGF-stimulated tyrosine-specific protein kinase activity paralleled changes in EGF receptors, both between clones and upon down-regulation. These studies indicate that a reduction in the concentration of EGF receptors in A431 cells allows escape from the growth inhibitory effects of EGF, but suggest that the pattern of growth response depends on biochemical events subsequent to EGF-receptor metabolism and activation of tyrosine-specific protein kinase.  相似文献   

12.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

13.
It is known that heterogeneous conditions exist in large-scale animal cell cultures. However, little is known about how heterogeneities affect cells, productivities, and product quality. To study the effect of non-constant dissolved oxygen tension (DOT), hybridomas were subjected to sinusoidal DOT oscillations in a one-compartment scale-down simulator. Oscillations were forced by manipulating the inlet oxygen partial pressure through a feedback control algorithm in a 220-mL bioreactor maintained at a constant agitation. Such temporal DOT oscillations simulate spatial DOT gradients that can occur in large scales. Different oscillation periods, in the range of 800 to 12,800 s (axis of 7% (air saturation) and amplitude of 7%), were tested and compared to constant DOT (10%) control cultures. Oscillating DOT decreased maximum cell concentrations, cell growth rates, and viability indexes. Cultures at oscillating DOT had an increased glycolytic metabolism that was evidenced by a decrease in yield of cells on glucose and an increase in lactate yield. DOT gradients, even several orders of magnitude higher than those expected under practical large-scale conditions, did not significantly affect the maximum concentration of an IgG(1) monoclonal antibody (MAb). The glycosylation profile of the MAb produced at a constant DOT of 10% was similar to that reported in the literature. However, MAb produced under oscillating culture conditions had a higher amount of triantennary and sialylated glycans, which can interfere with effector functions of the antibody. It was shown that transient excursions of hybridomas to limiting DOT, as occurs in deficiently mixed large-scale bioreactors, is important to culture performance as the oscillation period, and thus the time cells spent at low DOT, affected cell growth, metabolism, and the glycosylation pattern of MAb. Such results underline the importance of monitoring protein characteristics for the development of large-scale processes.  相似文献   

14.
O A Vorob'eva 《Tsitologiia》1990,32(8):840-846
A method of obtaining granulosa cell culture reacting to the action of gonadotropins and growth factors is described. The efficiency of cell cloning is enhanced under influence of insulin, epidermal growth factor (EGF) and fibroblast growth factors (FGF). Stimulation of proliferation by the latter two factors is seen in the medium with the low serum concentration. Luteinizing and follicle-stimulating inhibit the cell growth in culture. The role of growth factors and gonadotropins in regulation of granulosa proliferation in mammalian ovarian follicles is discussed.  相似文献   

15.
We apply a mathematical model for receptor-mediated cell uptake and processing of epidermal growth factor (EGF) to analyze and predict proliferation responses to fibroblastic cells transfected with various forms of the EGF receptor (EGFR) to EGF. The underlying conceptual hypothesis is that the mitogenic signal generated by EGF/EGFR binding on the cell surface, via stimulation of receptor tyrosine kinase activity, is attenuated when the receptors are downregulated and growth factor is depleted by endocytic internalization and subsequent intracellular degradation. Hence, the cell proliferation rate ought to depend on receptor/ligand binding and trafficking parameters as well as on intrinsic receptor signal transduction properties. The goal of our modeling efforts is to formulate this hypothesis in quantitative terms. The mathematical model consists of kinetic equations for binding, internalization, degradation, and recycling of EGF and EGFR, along with an expression relating DNA synthesis rate to EGF/EGFR complex levels. Parameter values have been previously determined from independent binding and trafficking kinetic experiments on B82 fibroblasts transfected with wild-type and mutant EGFR. We show that this model can successfully interpret literature data for EGF-dependent growth of NR6 fibroblasts transfected with wild-type EGFR. Moreover, it successfully predicts the literature observation that NR6 cells transfected with a delta 973 truncation mutant EGFR, which is kinase-active but internalization-deficient, require an order of magnitude lower EGF concentration than cells with wild-type EGFR for half-maximal proliferation rate. This result demonstrates that it may be feasible to genetically engineer mammalian cell lines with reduced growth factor requirements by a rational, nonempirical approach. We explore by further model computations the possibility of exploiting other varieties of EGFR mutants to alter growth properties of fibroblastic cells, based on relationships between changes in the primary structure of the EGF receptor and the rates of specific receptor/ligand binding and trafficking processes. Our studies show that the ability to predict cell proliferation as a function of serum growth factors such as EGF could lead to the designed development of cells with optimized growth responses. This approach may also aid in elucidation of mechanisms underlying loss of normal cell proliferation control in malignant transformation, by demonstrating that receptor trafficking dynamics may in some cases play as important a role as intrinsic signal transduction in determining the overall resulting mitogenic response.  相似文献   

16.
We have examined dependence of primary rat tracheal epithelial (RTE) on exogenous epidermal growth factor (EGF) and determined whether a TGF alpha autocrine pathway is operating in these cells. Primary RTE cells plated in serum free media (SFM) without EGF and bovine pituitary factor (BPE) show little proliferation compared to cultures propagated in media containing EGF/BPE (CSFM). Removal of EGF/BPE shortly after plating, however, results in significant proliferation, although plateau cell densities are reduced and cell morphology is significantly altered compared to cells propagated in CSFM. Addition of EGF and/or BPE to cultures propagated in SFM minus EGF/BPE restores maximum cell density. The concentration of TGF alpha peptide in media conditioned by cells propagated without EGF/BPE is lower than the concentration in the media of CSFM cultures. TGF alpha mRNA and protein levels are also significantly lower in cells late in culture compared to logarithmically growing cells regardless of the presence or absence of EGF/BPE. The proliferation of primary RTE cells propagated without EGF/BPE is inhibited by neutralizing TGF alpha antiserum and by a tyrphostin compound that blocks TGF alpha/EGF receptor tyrosine kinase activity. These results indicate that primary RTE cells utilize TGF alpha as an autocrine growth factor and that the autocrine pathway is regulated as a function of growth state of the cells. However, this pathway does not provide growth autonomy to primary RTE cells, since cultures remain dependent on exogenous EGF/BPE for sustained proliferation.  相似文献   

17.
Experiments were carried out to investigate putative beneficial effects of adding epidermal growth factor (EGF) or insulin-like growth factor-I (IGF-I) for bovine embryo culture in chemically defined media. Presumptive zygotes (18 h post-insemination) were randomly assigned to culture treatments. In experiment 1, treatments involved additions of recombinant human EGF to provide concentrations of 0 ng (control), 1, 5, and 25 ng/ml. No differences were seen in numbers of 4-cell stage embryos between groups. A concentration of 5 ng/ml EGF but not 1 or 25 ng/ml during embryo culture improved percentages of 4-cell stage embryos reaching blastocysts compared to the control (P<0.05). Numbers of inner cell mass (ICM) cells and trophoblast cells of day 8 blastocysts were similar for the control and 5 ng/ml EGF-treated groups. In experiment 2, culture with recombinant human IGF-I in concentrations of 0 ng (control), 2, 10, and 50 ng/ml resulted in no differences in numbers of 4-cell stage embryos between groups. When compared to controls, IGF-I treatments at 10 and 50 ng/ml improved proportions of 4-cell stage embryos that reached blastocysts (P<0.05). In experiment 3, numbers of ICM cells of day 8 blastocysts were significantly higher after being cultured with 50 ng/ml of IGF-I compared to those of the controls (P<0.05). No additive effect of combining EGF (5 ng/ml) and IGF-I (50 ng/ml) was seen when results were compared to those following supplementation of the media with either EGF or IGF-I alone. In conclusion, both EGF and IGF-I could independently enhance bovine preimplantational development in chemically defined media and IGF-I but not EGF may play a mitogenic role during early bovine development.  相似文献   

18.
An homogeneous cell population isolated from the inguinal tissue of 3-day-old rats is able to proliferate in primary culture. In the presence of a physiological concentration of insulin (1.5 nM) it converts into cells exhibiting the morphology and the biochemical characteristics of adipocytes. Insulin and epidermal growth factor (EGF) receptors were studied during both the exponential growth and the adipose conversion phases of these cells. Binding experiments with 125I-labelled peptides were performed directly in the culture dishes. The number of high affinity insulin binding sites increased, during the entire culture period studied, reaching 18 days after plating the value of 10,600 x 2360. Control cells (cultured in the presence of anti-insulin antibody) exhibited an increase of the concentration of insulin binding sites from no more than 500 sites/cell to 6880 +/- 1710 sites/cell between dat 0 and 9 (corresponding to the exponential growth phase); this increase was followed by a rapid reduction in insulin receptors during the stationary phase. The density of EGF binding sites increased between day 0 and 4 (one cell cycle), whether the cells were maintained or not with insulin, and plateaued thereafter. Mature adipocytes freshly isolated from the inguinal tissue of 3-day-old rats had no detectable EGF binding sites, but their content in high affinity binding sites for insulin was similar to that of cells after complete adipocyte conversion in primary culture.  相似文献   

19.
A growing number of studies are evaluating retinal progenitor cell (RPC) transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR) and evaluated whether exposure to epidermal growth factor (EGF) can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.  相似文献   

20.
The clonal cell line HT29-D4 was able to grow in a completely defined medium containing EGF, selenous acid, and transferrin in the presence of the anti-helminthic drug suramin. In the absence of suramin, the kinetics of cell growth and the cell density obtained were dependent on the external EGF concentration. In the presence of suramin, cell density reached a plateau independent of EGF concentration above 50 ng/ml. At the morphological level, suramin allowed hemicyst formation in the cell monolayer. The cells were polarized with a well-ordered brush border facing the culture medium and mature junctional complexes that divided the cell membrane in two distinct domains. The carcinoembryonic antigen was found to be restricted to the apical membrane domain while the major histocompatibility molecules HLA-ABC were segregated within the basolateral domain. The electrical parameters of suramin-treated cells grown on permeable filters were measured and demonstrated that the cell monolayer was electrically active. These properties were never found in the absence of the drug. Moreover, the vasoactive intestinal polypeptide (VIP) was able to induce a dramatic increase in cAMP only when it was added, in agreement with the localization of the VIP receptor, in the lower compartment of the culture chamber. In conclusion we described for the first time conditions allowing the growth of functionally differentiated human colic cell monolayers in chemically defined medium. This model will contribute to a better understanding of suramin action and of the mechanisms involved in cell polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号