首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To determine the potential role of the placenta in transmission of human immunodeficiency virus (HIV) from mother to fetus, the ability of human placental tissue to support HIV type 1 (HIV-1) infection was examined. HIV-1-seronegative first-trimester placentas were maintained in culture and infected with HIV-1. Virus production, measured by HIV-1 antigen release into the supernatant, and HIV-1 DNA, identified by polymerase chain reaction, were detected for at least 12 days postinfection. Western immunoblot analysis showed Gag proteins, precursor p55, and cleavage products p24 and p17 in HIV-1-infected tissues. Double labeling of placental villi with antibodies to CD4 and placental trophoblast-specific alkaline phosphatase indicated that trophoblasts express CD4 antigen. Additionally, immunostaining of HIV-1-infected tissues with anti-p24 antibodies demonstrated HIV-1 protein expression in placental trophoblasts. Evaluation of human chorionic gonadotropin and progesterone production by the placental cultures indicated that there was a 90% decrease in human chorionic gonadotropin and a 70% decrease in progesterone production in HIV-1-infected cultures in comparison with controls. These data demonstrate that trophoblastic cells of human placenta tissue express CD4 and are susceptible to HIV-1 infection; also, placental endocrine function is decreased by HIV-1 infection. Thus, the placenta may serve as a reservoir of HIV-1 infection during pregnancy contributing to infection of the fetus, and decreased placental hormone production may result in impaired fetal development.  相似文献   

3.

Background  

In pregnancy, maternal serum concentrations of calcitriol significantly rise as a result of increased renal and placental contribution in order to assure calcium supply for the developing fetus. Considering that placenta is a site for vitamin D activation, and the versatility and potency of calcitriol, it is feasible that this hormone participates in fetal/placental development and physiology. In the present work we studied calcitriol actions upon human chorionic gonadotropin (hCG) secretion and expression in cultured trophoblasts, as well as vitamin D receptor (VDR) and CYP27B1 immunolocalization in placental villi.  相似文献   

4.
Normal trophoblast of the human placenta elaborates at least two major protein hormones, chorionic gonadotropin (hCG), and placental lactogen (hPL). There are several gestational trophoblastic diseases of the placenta called hydatidiform mole, invasive mole, and choriocarcinoma. Molar and choriocarcinoma tissues characteristically synthesize large amounts of hCG and small quantities of hPL. To examine the role of trophoblast differentiation in the expression of the hCG and hPL genes, we studied the cytological distribution of their messenger RNA (mRNA) in tissue sections of human hydatidiform mole and choriocarcinoma by in situ hybridization. Histologically, these tissues are in different stages of cellular differentiation. In normal placenta, hCG alpha and - beta mRNA can be localized to some cytotrophoblasts and primarily to the syncytium, whereas hPL mRNA appears only in the syncytial layer. In hydatidiform mole, which still retains placental villous morphology, the hPL gene and hCG alpha and -beta genes are expressed but are poorly localized because of the admixture of cyto- and syncytiotrophoblasts. By contrast, choriocarcinoma, which is devoid of placental villous pattern but in which the cyto- and syncytiotrophoblast-like components are distinguishable, expresses hCG alpha and -beta in the syncytial- like areas but little, if any, hPL. These results suggest that a certain level of trophoblast differentiation, such as villous formation, is associated with hPL expression, while the hCG alpha gene and the hCG beta gene can be expressed in more disorganized tissues that contain cytotrophoblastic elements.  相似文献   

5.
Activation of hepatocyte growth factor (HGF) is a crucial limiting step in HGF-induced signaling pathway. The HGF activator inhibitor type 1 (HAI-1) was identified as a potent inhibitor of HGF activator (HGFA), a serine proteinase that is responsible for the activation of HGF in vivo. HAI-1 is an integral membrane Kunitz-type serine proteinase inhibitor, and its mRNA has been reported to be most abundant in the placenta. In this report, specific antibody to HAI-1 was used in an immunohistochemical procedure to determine the localization of HAI-I in human placenta. HAI-1 was expressed in cytotrophoblasts (Langhans' cells) of the double-layered trophoblastic epithelium of chorionic villi tissue, and syncytiotrophoblasts were almost negative. On the other hand, extravillous trophoblasts of cytotrophoblastic columns showed markedly decreased immunoreactivity, and those infiltrating into the superficial decidua membrane of early placenta were hardly stainable. The amnionic epithelial cells were also immunostained intensely. The presence of HAI-1 mRNA was also confirmed in a cultured human cytotrophoblastic cell line. In addition to HAI-1, low but distinct expression of HGFA mRNA was observed in the placenta tissue and cultured cytotrophoblasts by using a sensitive RT-PCR method. Since HGF plays an essential role in the placenta development, expression of HAI-1 and HGFA may have an important regulatory role in the placenta. The localization of HAI-I in the proliferating trophoblastic stem cells (Langhans' cells), but not in syncytiotrophoblasts and extravillous trophoblasts, suggest a possible role of HAI-1 in the proliferation of trophoblasts.  相似文献   

6.
7.
Due to the key role of the human chorionic gonadotropin hormone (hCG) in placental development, the aim of this study was to characterize the human trophoblastic luteinizing hormone/chorionic gonadotropin receptor (LH/CG-R) and to investigate its expression using the in vitro model of human cytotrophoblast differentiation into syncytiotrophoblast. We confirmed by in situ immunochemistry and in cultured cells, that LH/CG-R is expressed in both villous cytotrophoblasts and syncytiotrophoblasts. However, LH/CG-R expression decreased during trophoblast fusion and differentiation, while the expression of hCG and hPL (specific markers of syncytiotrophoblast formation) increased. A decrease in LH/CG-R mRNA during trophoblast differentiation was observed by means of semi-quantitative RT-PCR with two sets of primers. A corresponding decrease ( approximately 60%) in LH/CG-R protein content was shown by Western-blot and immunoprecipitation experiments. The amount of the mature form of LH/CG-R, detected as a 90-kDa band specifically binding (125)I-hCG, was lower in syncytiotrophoblasts than in cytotrophoblasts. This was confirmed by Scatchard analysis of binding data on cultured cells. Maximum binding at the cell surface decreased from 3,511 to about 929 molecules/seeded cells with a kDa of 0.4-0.5 nM. Moreover, on stimulation by recombinant hCG, the syncytiotrophoblast produced less cyclic AMP than cytotrophoblasts, indicating that LH/CG-R expression is regulated during human villous trophoblast differentiation.  相似文献   

8.
9.
Abstract. During spontaneous or chemically induced differentiation human choriocarcinoma cells express typical characteristics of the normal differentiating trophoblast: 1) increased production of peptide and steroid hormones (chorionic gonadotropin, placental lactogen, estrogens, progesterone); 2) increased activity of cellular alkaline phosphatase; 3) morphological transition from cytotrophoblast to syncytiotrophoblast-like cells; and 4) arrested cell proliferation. Since the extracellular matrix is known to control gene expression we have examined the effects of different substrates composed of matrix macromolecules on the differentiation of BeWo choriocarcinoma cells. Matrices tested were; fibronectin, laminin, collagens type I and type IV, the basement membrane-like complex matrix Matrigel, and a complex matrix extracted from human term placenta. Irrespective of the type of molecule(s), it was consistently found that, whenever the matrix molecules were presented as threedimensional structures (as opposed to protein coatings on tissue culture plastic) the response of affected differentiation markers monitored was highly pronounced. Morphology was changed from monolayers to rounded colonies, cell proliferation was reduced, and the secretion of chorionic gonadotropin was increased up to tenfold. Heterogeneous effects were observed on progesterone secretion and on the activity of cellular alkaline phosphatase. Cell adhesion to matrix molecules, however, did not depend on the structure of the matrix. This study demonstrates that gene expression in these tumor cells can be modified by extracellular matrix and highlights that not only the presence of effector molecules in the matrix but also the three-dimensional structure of the matrix is important for the induction of differentiation.  相似文献   

10.
The human placenta arises from the zygote through single cell intermediates called cytotrophoblasts that in turn give rise to a syncytium. In culture, mononucleated cytotrophoblasts exhibit little, if any, cell division but are converted to multinucleated cells. Choriocarcinoma, the malignant tumor of placenta trophoblast, comprises a mixed population of dividing cellular intermediates that resemble cytotrophoblasts but are less differentiated. Because the choriocarcinoma intermediates arise from dividing cells, the tumor may contain one or more cell types in abundance not present in the population of isolated placental cells. To study placental differentiation through cell-cell interaction, choriocarcinoma cell lines were co-cultured with placenta-derived cytotrophoblasts, and placental hormone biosynthesis, as a marker of differentiation was examined. We reasoned that intermediates formed by the tumor might interact with and complement those intermediates in the placenta-derived cytotrophoblast population. Co-culturing either the JAr or JEG choriocarcinoma cell lines with cytotrophoblasts elevated the synthesis of the chorionic gonadotropin alpha and beta subunits 10-20 fold, and human placental lactogen 5-fold. The effect was specific for these trophoblast-derived cells, since comparable quantities of Chinese hamster ovary or HeLa cells did not affect the placental cytotrophoblast culture. Further experiments suggested that the source of enhanced synthesis was the cytotrophoblasts. We propose that an interaction between cytotrophoblasts and choriocarcinoma cells occurs, which results in an increased number of differentiating cytotrophoblasts. Such co-cultures may represent a model system for examining choriocarcinoma cell interaction with normal cells, a process known to occur in vivo. The data are also consistent with the hypothesis that the regulated chorionic gonadotropin production in the placenta is determined by interaction among trophoblast cells at different stages of differentiation.  相似文献   

11.
12.
13.
14.
15.
The placenta is susceptible to diverse insults during human pregnancy. The expression of the protein N-myc down-regulated gene 1 (NDRG1) is regulated during cell proliferation, differentiation, and in response to stress. Nevertheless, the function of this protein in humans remains unknown. We tested the hypothesis that NDRG1 is up-regulated in hypoxic primary human trophoblasts and that NDRG1 modulates trophoblast response to hypoxia. We initially demonstrated that the expression of NDRG1 is enhanced in primary human trophoblasts exposed to hypoxia. Importantly, we found a similar increase in NDRG1 expression in placental samples derived from either singleton gestations complicated by intrauterine growth restriction or from dizygotic twin gestation where one twin exhibited growth restriction. Having established efficient lentivirus-mediated transfection of primary human trophoblasts, we overexpressed NDRG1 in trophoblasts, which resulted in enhanced trophoblast differentiation. In contrast, lentivirus-driven short interfering RNA-mediated silencing of NDRG1 diminished trophoblast viability and differentiation. Consistent with these results, NDRG1 reduced the expression level of p53 in trophoblasts cultured in standard or hypoxic conditions. Furthermore, NDRG1 expression was regulated by the activity of SIRT1 (Sir2-like protein 1), which promotes cell survival. Together, our data indicate that NDRG1 interacts with SIRT1/p53 signaling to attenuate hypoxic injury in human trophoblasts.  相似文献   

16.
BACKGROUND: Systemic lupus erythematosus (SLE) with or without evidence of antiphospholipid antibodies (aPA) and antiphospholipid syndrome (APS) is associated with a high rate of spontaneous abortions. The placenta is thought to be the site of pathological damage in many of these abortions. To test this hypothesis, we studied the effects of sera obtained from women with SLE with or without treatment on human placental explants in culture. METHODS: We cultured 5.5- to 7.5-week-old human placental explants in a culture medium containing F-12 DMEM and 10% FCS or in 90% human serum obtained from nonpregnant women with SLE prior to or after treatment. Culture was carried out for 96 hr. At the end of the culture period, we studied the secretion of the placental hormones estrogen (E2), progesterone (PGN), and human chorionic gonadotropin (hCG). In addition, we studied the proliferation rate (using PCNA staining) and the rate of apoptosis (using ApoTag) of the trophoblastic cells. RESULTS: Placentae grew better in normal human serum than in a chemically defined medium of F-12 DMEM and 10% FCS. Enhanced growth and higher secretion rates for hCG and estradiol (E2) were manifested in placentae cultured in control sera with no change in PGN secretion. Secretion rates of hCG and PGN (but not of E2 in the treated group) by placental explants were similar to that of controls. However, the serum levels prior to culture were not measured. Further, explants in serum from untreated women with SLE produced a significant decrease in the proliferation rate of the trophoblastic cells and an increase of apoptosis. Treatment significantly reduced the apoptotic rate and increased cell proliferation, but the cell proliferation rate was still lower than that noted in controls. CONCLUSIONS: We conclude that sera from women with SLE may directly damage the developing placenta reducing proliferation and enhancing apoptosis. Successful treatment of the women reduces that damage.  相似文献   

17.
During placental development cytotrophoblast stem cells fuse to form the syncytiotrophoblast, a multinucleate cytoplasm with a brush border in contact with the maternal blood. Biochemical differentiation including the expression of placental-specific proteins and hormones accompanies this maturation. However, the biochemical mechanisms responsible for these events are unknown. We have defined a system in which single cytotrophoblast-like cells of the human choriocarcinoma (BeWo) cell line undergo fusion and extensive morphological differentiation following their treatment with effectors of cyclic AMP metabolism. Forskolin incubation caused a dose-dependent increase in intracellular and secreted cyclic AMP and a coordinate fusion of cells which yielded syncytia containing hundreds of nuclei per cytoplasm and a mature dense "placental-like" brush border. These fused cells also synthesized and secreted large amounts of both subunits of chorionic gonadotropin. However, they continued to synthesize several other placenta-specific proteins--placental-like alkaline phosphatase, placental lactogen, and SP1--at rates similar to those in control cells. Other reported effectors of cyclic AMP metabolism also induced cell fusion, although theophylline, an inhibitor of phosphodiesterase, induced fusion by a cyclic AMP-independent mechanism. Additionally, unlike the case with forskolin, treatment of BeWo cells with theophylline did not induce other morphological features of mature syncytiotrophoblasts. Thus, this system will allow one to examine the biochemical mechanism of placental cell fusion in the absence of other variables of cell differentiation.  相似文献   

18.
AimsThe aim of this study was to investigate the significance of epidermal growth factor receptor (EGFR) ligands produced in syncytiotrophoblasts during normal pregnancy.Main methodsWe examined the expression of EGFR ligands in human pregnancy by real-time PCR, and analyzed the relationship between EGFR ligands and human chorionic gonadotropin (hCG) or human placental lactogen in amniotic fluid by ELISA. In addition, we also examined the EGFR ligands in syncytiotrophoblasts and the amount of hCG secretion in JAR, JEG3 and BeWo cells in the presence of each EGFR ligand.Key findingsIn order to identify possible candidates among the EGFR ligands, we examined the predominant expression of an EGFR ligand in the chorionic villi and amniotic fluid during normal pregnancy, and analyzed the relationship between EGFR ligands and hCG in trophoblastic model cells. Amphiregulin was primarily expressed throughout human pregnancy and stimulated the secretion of hCG, indicating that amphiregulin is a key molecule among EGFR ligands.SignificanceAmphiregulin may play a pivotal role in the development or maturation of placenta.  相似文献   

19.
Summary In primary, short-term cultures derived from first and third trimester placentae, 60 to 90 and 70 to 95%, respectively, of the total cell population positively stain for cytokeratin intermediate filaments, typical of epithelial, i.e. trophoblastic cells. The rest of the cells express only vimentin intermediate filaments and thus are of mesenchymal origin. Only the cytokeratin-positive cells express human chorionic gonadotropin (hCG), whereas both the epithelial and the mesenchymal cells stain positively for pregnancy-specific beta-1-glycoprtein (SP1). Cytokeratin-negative and vimentin-positive cell overgrowth is observed in cultures derived from first and early third trimester placentae. The cells constituting the monolayer thus formed are of fetal origin as evidenced by the expression of Y-body in over 80% of them. The cultured cells synthesize and secrete hCG and SP1. The activity of these trophoblast-specific functions is inversely proportional to the gestational age of the placenta. Production of specific proteins and expression of intermediate filaments are proposed as criteria for defining the nature and origin of placental cells in primary, short-term cultures.  相似文献   

20.
The gonadotropins luteinizing hormone, follicle-stimulating hormone, and human chorionic gonadotropin are composed of two noncovalently linked subunits, alpha and beta. The alpha subunit, identical in all three hormones, is produced in excess over the unique beta subunits by pituitary and placenta, and is secreted as uncombined, or free subunit. Free alpha subunit from both tissues has a larger molecular weight than the dimer form. In bovine pituitary an extra O-linked oligosaccharide is added to free alpha subunit, and this modification has recently been detected at an analogous position (threonine 39) on human alpha subunit secreted by choriocarcinoma cells. To assess the contribution of N-linked and O-linked oligosaccharides to the heterogeneity of human free alpha subunit, we have compared free alpha with human chorionic gonadotropin alpha secreted by explants and cultured cytotrophoblasts of human first trimester placenta. We have also examined the free and combined forms of human alpha subunit expressed in transfected C-127 mouse mammary tumor cells. Processing of the alpha subunit in placental and C-127 cells was similar. Tryptic mapping of placental-derived and transfected alpha subunits indicated that O-glycosylation at threonine 39 was not a major modification. In the presence of the oligosaccharide processing inhibitor swainsonine the difference in size between the free and combined forms of alpha was eliminated in both placental and C-127 cells, indicating that the two forms of alpha differed in their N-linked oligosaccharides. Furthermore, the oligosaccharides of free alpha subunits from placental and transfected cells were resistant to endoglycosidase H, but the combined forms of alpha were partially sensitive to the enzyme. Thus, in human first trimester placenta and mouse C-127 cells, combination of alpha with human chorionic gonadotropin beta alters the processing of N-linked oligosaccharides on alpha subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号