首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Roots undergo multiple changes as a consequence of arbuscular mycorrhizal (AM) interactions. One of the major alterations expected is the induction of membrane transport systems, including proton pumps. In this work, we investigated the changes in the activities of vacuolar and plasma membrane (PM) H(+) pumps from maize roots (Zea mays L.) in response to colonization by two species of AM fungi, Gigaspora margarita and Glomus clarum. Both the vacuolar and PM H(+)-ATPase activities were inhibited, while a concomitant strong stimulation of the vacuolar H(+)-PPase was found in the early stages of root colonization by G. clarum (30 days after inoculation), localized in the younger root regions. In contrast, roots colonized by G. margarita exhibited only stimulation of these enzymatic activities, suggesting a species-specific phenomenon. However, when the root surface H(+) effluxes were recorded using a noninvasive vibrating probe technique, a striking activation of the PM H(+)-ATPases was revealed specifically in the elongation zone of roots colonized with G. clarum. The data provide evidences for a coordinated regulation of the H(+) pumps, which depicts a mechanism underlying an activation of the root H(+)-PPase activity as an adaptative response to the energetic changes faced by the host root during the early stages of the AM interaction.  相似文献   

2.
3.
The stimulation of the activity of the H(+)-ATPase present in the vacuolar membrane (V-ATPase) of Saccharomyces cerevisiae is here described in response to a moderate stress induced by 2,4-dichlorophenoxyacetic acid (2,4-D). This in vivo activation (up to 5-fold) took place essentially during the adaptation period, preceding cell division under herbicide stress, in coordination with a marked activation of plasma membrane H(+)-ATPase (PM-ATPase) (up to 30-fold) and the decrease of intracellular and vacuolar pH values, suggesting that activation may be triggered by acidification. Single deletion of VMA1 and genes encoding other V-ATPase subunits led to a more extended period of adaptation and to slower growth under 2,4-D stress. Results suggest that a functional V-ATPase is required to counteract, more rapidly and efficiently, the dissipation of the physiological H(+)-gradient across vacuolar membrane registered during 2,4-D adaptation.  相似文献   

4.
The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite.  相似文献   

5.
6.
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50 = 38.4 nM) than Golgi and vacuole pumps (I50 = 0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.  相似文献   

7.
It has been well established that phosphorylation is an important reaction for the regulation of protein functions. In the N-terminal domain of the alpha-chain of pig gastric H(+)/K(+)-ATPase, reversible sequential phosphorylation occurs at Tyr 10 and Tyr 7. In this study, we determined the structure of the peptide involving the residues from Gly 2 to Gly 34 of pig gastric H(+)/K(+)-ATPase and investigated the tyrosine phosphorylation-induced conformational change using CD and NMR experiments. The solution structure showed that the N-terminal fragment has a helical conformation, and the peptide adopted two alpha-helices in 50% trifluoroethanol (TFE) solvent, suggesting that the peptide has a high helical propensity under hydrophobic conditions. Furthermore, the CD and NMR data suggested that the structure of the N-terminal fragment becomes more disordered as a result of phosphorylation of Tyr 10. This conformational change induced by the phosphorylation of Tyr 10 might be an advantageous reaction for sequential phosphorylation and may be important for regulating the function of H(+)/K(+)-ATPase.  相似文献   

8.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7 M.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA3 gibberellic acid - H+-ATPase adenosine triphosphatase - H+-PPase pyrophosphatase - ATP adenosine triphosphate - Tris Tris (hydroxymethyl)-aminomethane - MES (2[N-Morpholino]) ethane sulfonic acid - EDTA ethylene diamine tetraacetic acid - Pi inorganic phosphate  相似文献   

9.
One of the protective mechanisms used by plants to survive under conditions of salt stress caused by high NaCl concentration is the removal of Na+ from the cytoplasm. This mechanism involves a number of Na+/H+-antiporter proteins that are localized in plant plasma and vacuolar membranes. Due to the driving force of the electrochemical H+ gradient created by membrane H+-pumps (H+-ATPases and vacuolar H+-pyrophosphatases), Na+/H+-antiporters extrude sodium ions from the cytoplasm in exchange for protons. In this study, we have identified the gene for the barley vacuolar Na+/H+-antiporter HvNHX2 using the RACE (rapid amplification of cDNA ends)-PCR (polymerase chain reaction) technique. It is shown that the identified gene is expressed in roots, stems, and leaves of barley seedlings and that it presumably encodes a 59.6 kD protein composed of 546 amino acid residues. Antibodies against the C-terminal fragment of HvNHX2 were generated. It is shown that the quantity of HvNHX2 in tonoplast vesicles isolated from roots of barley seedlings remains the same, whereas the rate of Na+/H+ exchange across these membranes increases in response to salt stress. The 14-3-3-binding motif Lys-Lys-Glu-Ser-His-Pro (371-376) was detected in the HvNHX2 amino acid sequence, which is suggestive of possible involvement of the 14-3-3 proteins in the regulation of HvNHX2 function.  相似文献   

10.
11.
Summary The water expulsion vacuole (WEV) in zoospores ofPhytophthora nicotianae and other members of the Oomycetes is believed to function in cell osmoregulation. We have used videomicroscopy to analyse the behaviour of the WEV during zoospore development, motility and encystment inP. nicotianae. After cleavage of multinucleate sporangia, the WEV begins to pulse slowly but soon attains a rate similar to that seen in motile zoospores. In zoospores, the WEV has a mean cycle time of 5.7 ± 0.71 s. The WEV continues to pulse at this rate until approximately 4 min after the onset of encystment. At this stage, pulsing slows progressively until it becomes undetectable. The commencement of WEV operation in sporangia coincides with the reduction of zoospore volume prior to release from the sporangium. Disappearance of the WEV during encystment occurs as formation of a cell wall allows the generation of turgor pressure in the cyst. As in other organisms, the WEV inP. nicotianae zoospores consists of a central bladder surrounded by a vesicular and tubular spongiome. Immunolabelling with a monoclonal antibody directed towards vacuolar H+-ATPase reveals that this enzyme is confined to membranes of the spongiome and is absent from the bladder membrane or zoospore plasma membrane. An antibody directed towards plasma membrane H+-ATPase shows the presence of this ATPase in both the bladder membrane and the plasma membrane over the cell body but not the flagella. Analysis of ATPase activity in microsomal fractions fromP. nicotianae zoospores has provided information on the biochemical properties of the ATPases in these cells and has shown that they are similar to those in true fungi. Inhibition of the vacuolar H+-ATPase by potassium nitrate causes a reduction in the pulse rate of the WEV in zoospores and leads to premature encystment. These results give support to the idea that the vacuolar H+-ATPase plays an important role in water accumulation by the spongiome in oomycete zoospores, as it does in other protists.Abbreviations BMM butyl methylmethacrylate - F fix 4% formaldehyde fixation - GF fix 4% formaldehyde and 0.2% glutaraldehyde fixation - V-ATPase vacuolar H+-ATPase - WEV water expulsion vacuole  相似文献   

12.
Extracellular signal-regulated protein kinases (ERKs) are important in many cellular functions. We and others have previously reported that prolonged exposure of gastric parietal cells to epidermal growth factor (EGF) enhanced gastric acid secretion stimulated by secretagogues via ERKs. In this study, we examined whether ERKs regulated H(+),K(+)-ATPase alpha-subunit gene expression using a gastric cancer cell line, AGS. EGF induced ERK activity time- and dose-dependently with a maximal effect observed at 10 min and 10 nM, respectively. The MEK inhibitors, U0126 and PD-98059, dose-dependently inhibited the ERK activity stimulated by EGF. To test H(+),K(+)-ATPase alpha-subunit gene expression, we transfected AGS cells with a plasmid containing a canine H(+),K(+)-ATPase alpha-subunit gene promoter fused to a luciferase reporter gene. EGF induced luciferase activity in transfected cells; this effect was inhibited by the MEK inhibitors, suggesting that EGF-induced gene expression involved the ERK pathway. When AGS cells were transfected with the reporter plasmids in conjunction with an expression vector encoding constitutively active MEK1, luciferase activity was strongly enhanced; this effect was attenuated by the MEK inhibitors or by an additional cotransfection of dominant negative MEK1. Taken together, our results led us to conclude that the ERK pathway may mediate H(+),K(+)-ATPase alpha-subunit gene expression, contributing to gastric acid secretion in parietal cells.  相似文献   

13.
Regulation of the vacuolar H(+)-ATPase in organellar and transepithelial acidification has been attributed to the effects of the proton electrochemical gradient across the membrane or to changes in the number of proton pumps. We now report the identification and purification of a protein from bovine kidney cytosol that inhibits both ATPase activity and proton translocating activity of vacuolar H(+)-ATPases. Its relative molecular weight (M(r)) is 6300, similar to that for protein inhibitors of the mitochondrial F0F1-ATPase. The newly identified cytosolic inhibitor protein may participate in the physiologic regulation of the vacuolar H(+)-ATPase by suppressing activity directly.  相似文献   

14.
The carrier-mediated, electroneutral exchange of Na(+) for H(+) across the plasma membrane does not directly consume metabolic energy. Nevertheless, acute depletion of cellular ATP markedly decreases transport. We analyzed the possible involvement of polyphosphoinositides in the metabolic regulation of NHE1, the ubiquitous isoform of the Na(+)/H(+) exchanger. Depletion of ATP was accompanied by a marked reduction of plasmalemmal phosphatidylinositol 4,5-bisphosphate (PIP(2)) content. Moreover, sequestration or hydrolysis of plasmalemmal PIP(2), in the absence of ATP depletion, was associated with profound inhibition of NHE1 activity. Examination of the primary structure of the COOH-terminal domain of NHE1 revealed two potential PIP(2)-binding motifs. Fusion proteins encoding these motifs bound PIP(2) in vitro. When transfected into antiport-deficient cells, mutant forms of NHE1 lacking the putative PIP(2)-binding domains had greatly reduced transport capability, implying that association with PIP(2) is required for optimal activity. These findings suggest that NHE1 activity is modulated by phosphoinositides and that the inhibitory effect of ATP depletion may be attributable, at least in part, to the accompanying net dephosphorylation of PIP(2).  相似文献   

15.
The activity of Na+/H(+)-exchange and H(+)-ATPase was measured in the absence of CO2/HCO3 by microfluorometry at the single cell level in rat proximal tubules (superficial S1/S2 segments) loaded with BCECF [2'7'-bis(carboxyethyl)5-6-carboxyfluorescein- acetoxymethylester]. Intracellular pH (pHi) was lowered by a NH4Cl-prepulse technique. In the absence of Na+ in the superfusion solutions, pHi recovered from the acid load by a mechanism inhibited by 0.1 microM bafilomycin A1, a specific inhibitor of a vacuolar-type H(+)-ATPase. Readdition of Na+ in the presence of bafilomycin A1 produced an immediate recovery of pHi by a mechanism sensitive to the addition of 10 microM EIPA (ethylisopropylamiloride), a specific inhibitor of Na+/H+ exchange. The transport rate of the H(+)-ATPase is about 40% of Na+/H(+)-exchange activity at a similar pHi (0.218 +/- 0.028 vs. 0.507 +/- 0.056 pH unit/min. Pre-exposure of the tubules to 30 mM fructose, 0.5 mM iodoacetate and 1 mM KCN (to deplete intracellular ATP) prevented a pHi recovery in Na(+)-free media; readdition of Na+ led to an immediate pHi recovery. Tubules pre-exposed to Cl(-)-free media for 2 hr also reduced the rate of Na(+)-independent pHi recovery. In free-flow electrophoretic separations of brush border membranes and basolateral membranes, a bafilomycin A1-sensitive ATPase activity was found to be associated with the brush border membrane fraction; half maximal inhibition is at 6 x 10(-10) M bafilomycin A1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Na+,K(+)-ATPase is a ubiquitous plasmalemmal membrane protein essential for generation and maintenance of transmembrane Na+ and K+ gradients in virtually all animal cell types. Activity and polarized distribution of renal Na+,(+)-ATPase appears to depend on connection of ankyrin to the spectrin-based membrane cytoskeleton as well as on association with actin filaments. In a previous study we showed copurification and codistribution of renal Na+,K(+)-ATPase not only with ankyrin, spectrin and actin, but also with two further peripheral membrane proteins, pasin 1 and pasin 2. In this paper we show by sequence analysis through mass spectrometry as well as by immunoblotting that pasin 2 is identical to moesin, a member of the FERM (protein 4.1, ezrin, radixin, moesin) protein family, all members of which have been shown to serve as cytoskeletal adaptor molecules. Moreover, we show that recombinant full-length moesin as well as its FERM domain bind to Na+,K(+)-ATPase and that this binding can be inhibited by an antibody specific for the ATPase activity-containing cytoplasmic loop (domain 3) of the Na+,K(+)-ATPase alpha-subunit. This loop has been previously shown to be a site essential for ankyrin binding. These observations indicate that moesin might not only serve as direct linker molecule of Na+,K(+)-ATPase to actin filaments but also modify ankyrin binding at domain 3 of Na+,K(+)-ATPase in a way similar to protein 4.1 modifying the binding of ankyrin to the cytoplasmic domain of the erythrocyte anion exchanger (AE1).  相似文献   

17.
Physiological mechanisms involved in acclimation to variable salinity and oxygen levels and their interaction were studied in European flounder. The fish were acclimated for 2 weeks to freshwater (1 per thousand salinity), brackish water (11 per thousand) or full strength seawater (35 per thousand) under normoxic conditions (water Po(2) = 158 mmHg) and then subjected to 48 h of continued normoxia or hypoxia at a level (Po(2) = 54 mmHg) close to but above the critical Po(2). Plasma osmolality, [Na(+)] and [Cl(-)] increased with increasing salinity, but the rises were limited, reflecting an effective extracellular osmoregulation. Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na(+)/K(+)-ATPase activity did not change with salinity, but hypoxia caused a 25% decrease in branchial Na(+)/K(+)-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant decrease in mRNA levels of the Na(+)/K(+)-ATPase alpha1-subunit, signifying a reduced expression of the transporter gene. The reduced ATPase activity did not influence extracellular ionic concentrations. Blood [Hb] was stable with salinity, and it was not increased by hypoxia. Instead, hypoxia decreased the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O(2) affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na(+)/K(+)-ATPase activity, which did not compromise extracellular osmoregulation.  相似文献   

18.
Zhang Y  Wang L  Liu Y  Zhang Q  Wei Q  Zhang W 《Planta》2006,224(3):545-555
Nitric oxide (NO), an endogenous signaling molecule in animals and plants, mediates responses to abiotic and biotic stresses. Our previous work demonstrated that 100 μM sodium nitroprusside (SNP, an NO donor) treatment of maize seedlings increased K+ accumulation in roots, leaves and sheathes, while decreasing Na+ accumulation (Zhang et al. in J Plant Physiol Mol Biol 30:455–459, 2004b). Here we investigate how NO regulates Na+, K+ ion homeostasis in maize. Pre-treatment with 100 μM SNP for 2 days improved later growth of maize plants under 100 mM NaCl stress, as indicated by increased dry matter accumulation, increased chlorophyll content, and decreased membrane leakage from leaf cells. An NO scavenger, methylene blue (MB-1), blocked the effect of SNP. These results indicated that SNP-derived NO enhanced maize tolerance to salt stress. Further analysis showed that NaCl induced a transient increase in the NO level in maize leaves. Both NO and NaCl treatment stimulated vacuolar H+-ATPase and H+-PPase activities, resulting in increased H+-translocation and Na+/H+ exchange. NaCl-induced H+-ATPase and H+-PPase activities were diminished by MB-1. 1-Butanol, an inhibitor of phosphatidic acid (PA) production by phospholipase D (PLD), reduced NaCl- and NO-induced H+-ATPase activation. In contrast, applied PA stimulated H+-ATPase activity. These results suggest that NO acts as a signal molecule in the NaCl response by increasing the activities of vacuolar H+-ATPase and H+-PPase, which provide the driving force for Na+/H+ exchange. PLD and PA play an important role in this process.  相似文献   

19.
Maize root tonoplasts are able to accumulate Ca(2+) using the energy derived from the H(+) gradient formed during PP(i) hydrolysis. Oxalate increases 6- to 10-fold the amount of Ca(2+) accumulated by tonoplast. Two apparently different K(s) values for Ca(2+) with values of 0.36 and 4.70 microM were detected when oxalate was included in the medium and the free Ca(2+) concentration in the medium was buffered with the use of EGTA. Binding of Ca(2+) to the outer surface of tonoplasts inhibits the outflow of Ca(2+) previously accumulated by the tonoplast, half-maximal inhibition being observed in presence of 1 microM Ca(2+). Thapsigargin, a specific inhibitor of Ca(2+)-ATPase, inhibits the Ca(2+) uptake driven by H(+) gradient but does not inhibit the hydrolysis of PP(i) nor the formation of a H(+) gradient.  相似文献   

20.
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号