首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome b and D-loop nucleotide sequences were used to study patterns of molecular evolution and phylogenetic relationships between the pheasants and the partridges, which are thought to form two closely related monophyletic galliform lineages. Our analyses used 34 complete cytochrome b and 22 partial D-loop sequences from the hypervariable domain I of the D-loop, representing 20 pheasant species (15 genera) and 12 partridge species (5 genera). We performed parsimony, maximum likelihood, and distance analyses to resolve these phylogenetic relationships. In this data set, transversion analyses gave results similar to those of global analyses. All of our molecular phylogenetic analyses indicated that the pheasants and partridges arose through a rapid radiation, making it difficult to establish higher level relationships. However, we were able to establish six major lineages containing pheasant and partridge taxa, including one lineage containing both pheasants and partridges (Gallus, Bambusicola and Francolinus). This result, supported by maximum likelihood tests, indicated that the pheasants and partridges do not form independent monophyletic lineages.  相似文献   

2.
    
Gene paralogs are copies of an ancestral gene that appear after gene or full genome duplication. When two sister gene copies are maintained in the genome, redundancy may release certain evolutionary pressures, allowing one of them to access novel functions. Here, we focused our study on gene paralogs on the evolutionary history of the three polypyrimidine tract binding protein genes (PTBP) and their concurrent evolution of differential codon usage preferences (CUPrefs) in vertebrate species. PTBP1-3 show high identity at the amino acid level (up to 80%) but display strongly different nucleotide composition, divergent CUPrefs and, in humans and in many other vertebrates, distinct tissue-specific expression levels. Our phylogenetic inference results show that the duplication events leading to the three extant PTBP1-3 lineages predate the basal diversification within vertebrates, and genomic context analysis illustrates that local synteny has been well preserved over time for the three paralogs. We identify a distinct evolutionary pattern towards GC3-enriching substitutions in PTBP1, concurrent with enrichment in frequently used codons and with a tissue-wide expression. In contrast, PTBP2s are enriched in AT-ending, rare codons, and display tissue-restricted expression. As a result of this substitution trend, CUPrefs sharply differ between mammalian PTBP1s and the rest of PTBPs. Genomic context analysis suggests that GC3-rich nucleotide composition in PTBP1s is driven by local substitution processes, while the evidence in this direction is thinner for PTBP2-3. An actual lack of co-variation between the observed GC composition of PTBP2-3 and that of the surrounding non-coding genomic environment would raise an interrogation on the origin of CUPrefs, warranting further research on a putative tissue-specific translational selection. Finally, we communicate an intriguing trend for the use of the UUG-Leu codon, which matches the trends of AT-ending codons. Our results are compatible with a scenario in which a combination of directional mutation–selection processes would have differentially shaped CUPrefs of PTBPs in vertebrates: the observed GC-enrichment of PTBP1 in placental mammals may be linked to genomic location and to the strong and broad tissue-expression, while AT-enrichment of PTBP2 and PTBP3 would be associated with rare CUPrefs and thus, possibly to specialized spatio-temporal expression. Our interpretation is coherent with a gene subfunctionalisation process by differential expression regulation associated with the evolution of specific CUPrefs.  相似文献   

3.
    
Chronic obstructive pulmonary disease (COPD), a lung disease, affects a large number of people worldwide, leading to death. Here, we analyzed the compositional features and trends of codon usage of the genes influencing COPD to understand molecular biology, genetics, and evolutionary relationships of these genes as no work was reported yet. Coding sequences of COPD genes were found to be rich in guanine-cytosine (GC) content. A high value (34-60) of the effective number of codons of the genes indicated low codon usage bias (CUB). Correspondence analysis suggested that the COPD genes were distinct in their codon usage patterns. Relative synonymous codon usage values of codons differed between the more preferred codons and the less-preferred ones. Correlation analysis between overall nucleotides and those at third codon position revealed that mutation pressure might influence the CUB of the genes. The high correlation between GC12 and GC3 signified that directional mutation pressure might have operated at all the three codon positions in COPD genes.  相似文献   

4.
Salim HM  Ring KL  Cavalcanti AR 《Protist》2008,159(2):283-298
We used the recently sequenced genomes of the ciliates Tetrahymena thermophila and Paramecium tetraurelia to analyze the codon usage patterns in both organisms; we have analyzed codon usage bias, Gln codon usage, GC content and the nucleotide contexts of initiation and termination codons in Tetrahymena and Paramecium. We also studied how these trends change along the length of the genes and in a subset of highly expressed genes. Our results corroborate some of the trends previously described in Tetrahymena, but also negate some specific observations. In both genomes we found a strong bias toward codons with low GC content; however, in highly expressed genes this bias is smaller and codons ending in GC tend to be more frequent. We also found that codon bias increases along gene segments and in highly expressed genes and that the context surrounding initiation and termination codons are always AT rich. Our results also suggest differences in the efficiency of translation of the reassigned stop codons between the two species and between the reassigned codons. Finally, we discuss some of the possible causes for such translational efficiency differences.  相似文献   

5.
A major assumption of many molecular phylogenetic methods is the homogeneity of nucleotide frequencies among taxa, which refers to the equality of the nucleotide frequency bias among species. Changes in nucleotide frequency among different lineages in a data set are thought to lead to erroneous phylogenetic inference because unrelated clades may appear similar because of evolutionarily unrelated similarities in nucleotide frequencies. We tested the effects of the heterogeneity of nucleotide frequency bias on phylogenetic inference, along with the interaction between this heterogeneity and stratified taxon sampling, by means of computer simulations using evolutionary parameters derived from genomic databases. We found that the phylogenetic trees inferred from data sets simulated under realistic, observed levels of heterogeneity for mammalian genes were reconstructed with accuracy comparable to those simulated with homogeneous nucleotide frequencies; the results hold for Neighbor-Joining, minimum evolution, maximum parsimony, and maximum-likelihood methods. The LogDet distance method, specifically designed to deal with heterogeneous nucleotide frequencies, does not perform better than distance methods that assume substitution pattern homogeneity among sequences. In these specific simulation conditions, we did not find a significant interaction between phylogenetic accuracy and substitution pattern heterogeneity among lineages, even when the taxon sampling is increased.  相似文献   

6.
Lignins are complex phenolic heteropolymers present in xylem and sclerenchyma cell walls in tracheophytes. The occurrence of lignin-like polymers in bryophytes is controversial. In this study two polyclonal antibodies against homoguaiacyl (G) and guaiacyl/syringyl (GS) synthetic lignin-like polymers that selectively labelled lignified cell walls in tracheophytes also bound to cell walls in bryophytes, the GS antibody usually giving a stronger labelling than the G antibody. In contrast to tracheophytes, the antibody binding in liverworts and mosses was not tissue-specific. In the hornworts Megaceros flagellaris and M. fuegiensis the pseudoelaters and spores were labelled more intensely than the other cell types with the GS antibody. The cell walls in Nitella were labelled with both antibodies but no binding was observed in Coleochaete. The results suggest that the ability to incorporate G or GS moieties in cell walls is a plesiomorphy (primitive character) of the land plant clade.  相似文献   

7.
Blumea balsamifera (L.) DC., a medicinal plant with high economic value in the Asteraceae family, is widely distributed in China and Southeast Asia. However, studies on the population structure or phylogenetic relationships with other related species are rare owing to the lack of genome information. In this study, through high-throughput sequencing, we found that the chloroplast genome of B. balsamifera was 151,170 bp in length, with a pair of inverted repeat regions (IRa and IRb) comprising 24,982 bp, a large single-copy (LSC) region comprising 82,740 bp, and a small single-copy (SSC) region comprising 18,466 bp. A total of 130 genes were identified in the chloroplast genome of B. balsamifera, including 85 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes; furthermore, sequence analysis identified 53 simple sequence repeats. Whole chloroplast genome comparison indicated that the inverted regions (IR) were more conserved than large single-copy and SSC regions. Phylogenetic analysis showed that B. balsamifera is closely related to Pluchea indica. Conclusively, the chloroplast genome of B. balsamifera was helpful for species identification and analysis of the genetic diversity and evolution in the genus Blumea and family Asteraceae.  相似文献   

8.
在基因组学水平上研究密码子使用偏性模式、成因并分析进化过程中的选择压力在基因组学研究中有重要意义。文章概述了目前提出的密码子使用偏性的量化方法及实现原理。目前研究发现:有些量化密码子偏性的方法受高表达基因参考数据集未完全注释的限制,不同密码子位置对变异和选择的影响不同,以及不同密码子位置处GC含量和嘌呤含量的贡献不同。由此展望密码子偏性量化方法发展方向为:需要设计不需要相关参考基因集合先验知识的密码子使用偏性量化方法;考虑不同位置处背景核苷酸组成的密码子使用偏性的量化方法;同时考虑基因表达水平的密码子使用偏性量化方法。最后,归纳了目前可用的密码子使用偏性的量化工具和数据库。  相似文献   

9.
    
The relationships among the four major embryophyte lineages (mosses, liverworts, hornworts, vascular plants) and the timing of the origin of land plants are enigmatic problems in plant evolution. Here, we resolve the monophyly of bryophytes by improving taxon sampling of hornworts and eliminating the effect of synonymous substitutions. We then estimate the divergence time of crown embryophytes based on three fossil calibration strategies, and reveal that maximum calibration constraints have a major effect on estimating the time of origin of land plants. Moreover, comparison of priors and posteriors provides a guide for evaluating the optimal calibration strategy. By considering the reliability of fossil calibrations and the influences of molecular data, we estimate that land plants originated in the Precambrian (980–682 Ma), much older than widely recognized. Our study highlights the important contribution of molecular data when faced with contentious fossil evidence, and that fossil calibrations used in estimating the timescale of plant evolution require critical scrutiny.  相似文献   

10.
DING proteins have been described as animal and plant proteins with potential biomineralisation, receptor or signalling roles that have been characterised by an N-terminal DINGGG-sequence. However, these sequences have only ever been identified as either N-terminal peptides or partial cDNA sequences, and have yet to be detected in any of the many genomic animal and plant genomes now available. Microbial relatives of the DING proteins have been described, which appear to be periplasmic phosphate-binding proteins. Recently, full-length Pseudomonas aeruginosa UCBPP-PA14 and Hypericum perforatum genes have been sequenced that show high homology to the published DING protein N-terminal sequences, and small peptides previously identified in conjunction with the peptide sequencing of DING proteins can also be mapped to regions across these full-length sequences. Searching with these sequences identifies other plant and animal cDNA fragments in the public nucleotide databases, and, additionally, an unordered rat genomic contig that contains a DING-like sequence on a small fragment. Analysing the codon usage of these DNA sequences identifies all of these sequences as of Pseudomonas origin, suggesting that DING proteins do not exist in eukaryotes, but instead are potentially due to microbial contamination or infection.  相似文献   

11.
Over a broad taxonomic range that spans monocots and dicots, upstream enzymes of the anthocyanin pigment pathway have evolved less rapidly than downstream enzymes. In this article we show that this pattern is also evident within the genus Ipomoea. Specifically, the most upstream enzyme, chalcone synthase (CHS-D), evolves more slowly than the two most downstream enzymes, ancyocyanidin synthase (ANS) and UDP glucose flavonoid 3-oxy-glucosyltransferase (UFGT). This pattern appears not to be due to variation in mutation rates, because the CHS-D gene exhibits higher synonymous substitution rates than the genes for the other two enzymes. Codon-based tests for positive selection suggest that it has been negligible or absent in all three genes. In addition, the mean number of indel-creating events is four times as high in the downstream genes as in CHS-D. Unlike the downstream genes, CHS-D also exhibits evidence of codon bias. Together, the evidence suggests that the difference in nonsynonymous substitution rates between upstream and downstream genes is due to relaxed constraint on the downstream genes rather than a greater frequency of positively selected substitutions.  相似文献   

12.
Influenza virus poses a significant threat to public health, as exemplified by the recent introduction of the new pandemic strain H1N1/09 into human populations. Pandemics have been initiated by the occurrence of novel changes in animal sources that eventually adapt to human. One important issue in studies of viral genomes, particularly those of influenza virus, is to predict possible changes in genomic sequence that will become hazardous. We previously established a clustering method termed ‘BLSOM’ (batch-learning self-organizing map) that does not depend on sequence alignment and can characterize and compare even 1 million genomic sequences in one run. Strategies for comparing a vast number of genomic sequences simultaneously become increasingly important in genome studies because of remarkable progresses in nucleotide sequencing. In this study, we have constructed BLSOMs based on the oligonucleotide and codon composition of all influenza A viral strains available. Without prior information with regard to their hosts, sequences derived from strains isolated from avian or human sources were successfully clustered according to the hosts. Notably, the pandemic H1N1/09 strains have oligonucleotide and codon compositions that are clearly different from those of human seasonal influenza A strains. This enables us to infer future directional changes in the influenza A viral genome.  相似文献   

13.
The compositional non-randomness was studied in genes of Saccharomyces cerevisiae and Schizosaccharomyces pombe. In both species, codon usage is well correlated with expressivity (measured as the codon adaptation index). Both species generally display higher nucleotide non-randomness in the group of highly expressed genes than in the lowly expressed genes. The highly expressed genes in both species are furthermore characterized by marked peaks in non-randomness at N=3 upstream of start codons, N=2 downstream of start codons and at N=1 and N=7 downstream of stop codons, indicating that these nucleotides may be key elements in translational regulation. Intragenic variation in codon usage was also observed to be linked to expressivity. It is suggested that the firm link between expressivity and codon usage calls for codon optimization. Based on bioinformatic calculations, examples of proteins are given for which codon optimizations might be relevant.  相似文献   

14.
15.
16.
Standard methods of phylogenetic reconstruction are based on models that assume homogeneity of nucleotide composition among taxa. However, this assumption is often violated in biological data sets. In this study, we examine possible effects of nucleotide heterogeneity among lineages on the phylogenetic reconstruction of a bacterial group that spans a wide range of genomic nucleotide contents: obligately endosymbiotic bacteria and free-living or commensal species in the gamma-Proteobacteria. We focus on AT-rich primary endosymbionts to better understand the origins of obligately intracellular lifestyles. Previous phylogenetic analyses of this bacterial group point to the importance of accounting for base compositional variation in estimating relationships, particularly between endosymbiotic and free-living taxa. Here, we develop an approach to compare susceptibility of various phylogenetic reconstruction methods to the effects of nucleotide heterogeneity. First, we identify candidate trees of gamma-Proteobacteria groEL and 16S rRNA using approaches that assume homogeneous and stationary base composition, including Bayesian, maximum likelihood, parsimony, and distance methods. We then create permutations of the resulting candidate trees by varying the placement of the AT-rich endosymbiont Buchnera. These permutations are evaluated under the nonhomogeneous and nonstationary maximum likelihood model of Galtier and Gouy, which allows equilibrium base content to vary among examined lineages. Our results show that commonly used phylogenetic methods produce incongruent trees of the Enterobacteriales, and that the placement of Buchnera is especially unstable. However, under a nonhomogeneous model, various groEL and 16S rRNA phylogenies that separate Buchnera from other AT-rich endosymbionts (Blochmannia and Wigglesworthia) have consistently and significantly higher likelihood scores. Blochmannia and Wigglesworthia appear to have evolved from secondary endosymbionts, and represent an origin of primary endosymbiosis that is independent from Buchnera. This application of a nonhomogeneous model offers a computationally feasible way to test specific phylogenetic hypotheses for taxa with heterogeneous and nonstationary base composition.  相似文献   

17.
    
Organophosphorous pesticides and nerve agents inhibit the enzyme acetylcholinesterase at neuronal synapses and in neuromuscular junctions. The resulting accumulation of acetylcholine overwhelms regulatory mechanisms, potentially leading to seizures and death from respiratory collapse. While current therapies are only capable of reducing mortality, elevation of the serum levels of the related enzyme butyrylcholinesterase (BChE) by application of the purified protein as a bioscavenger of organophosphorous compounds is effective in preventing all symptoms associated with poisoning by these toxins. However, BChE therapy requires large quantities of enzyme that can easily overwhelm current sources. Here, we report genetic optimization, cloning and high‐level expression of human BChE in plants. Plant‐derived BChE is shown to be biochemically similar to human plasma‐derived BChE in terms of catalytic activity and inhibitor binding. We further demonstrate the ability of the plant‐derived bioscavenger to protect animals against an organophosphorous pesticide challenge.  相似文献   

18.
19.
Sequences of the complete protein-coding portions of the mitochondrial (mt) genome were analysed for 6 species of cestodes (including hydatid tapeworms and the pork tapeworm) and 5 species of trematodes (blood flukes and liver- and lung-flukes). A near-complete sequence was also available for an additional trematode (the blood fluke Schistosoma malayensis). All of these parasites belong to a large flatworm taxon named the Neodermata. Considerable variation was found in the base composition of the protein-coding genes among these neodermatans. This variation was reflected in statistically-significant differences in numbers of each inferred amino acid between many pairs of species. Both convergence and divergence in nucleotide, and hence amino acid, composition was noted among groups within the Neodermata. Considerable variation in skew (unequal representation of complementary bases on the same strand) was found among the species studied. A pattern is thus emerging of diversity in the mt genome in neodermatans that may cast light on evolution of mt genomes generally.  相似文献   

20.
    
《Current biology : CB》2020,30(19):3833-3840.e4
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号