首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.  相似文献   

2.
Many animals exhibit stereotypical left-right (LR) asymmetry in their internal organs. The mechanisms of LR axis formation required for the subsequent LR asymmetric development are well understood, especially in some vertebrates. However, the molecular mechanisms underlying LR asymmetric morphogenesis, particularly how mechanical force is integrated into the LR asymmetric morphogenesis of organs, are poorly understood. Here, we identified zipper (zip), encoding a Drosophila non-muscle myosin II (myosin II) heavy chain, as a gene required for LR asymmetric development of the embryonic anterior midgut (AMG). Myosin II is known to directly generate mechanical force in various types of cells during morphogenesis and cell migration. We found that myosin II was involved in two events in the LR asymmetric development of the AMG. First, it introduced an LR bias to the directional position of circular visceral muscle (CVMU) cells, which externally cover the midgut epithelium. Second, it was required for the LR-biased rotation of the AMG. Our results suggest that myosin II in CVMU cells plays a crucial role in generating the force leading to LR asymmetric morphogenesis. Taken together with previous studies in vertebrates, the involvement of myosin II in LR asymmetric morphogenesis might be conserved evolutionarily.  相似文献   

3.
Cilia are microtubule-based organelles that are present on the surfaces of almost all vertebrate cells. Most cilia function as sensory or molecular transport structures. Malfunctions of cilia have been implicated in several diseases of human development. The assembly of cilia is initiated by the centriole (or basal body), and several centrosomal proteins are involved in this process. The mammalian LIM protein Ajuba is a well-studied centrosomal protein that regulates cell division but its role in ciliogenesis is unknown. In this study, we isolated the medaka homolog of Ajuba and showed that Ajuba localizes to basal bodies of cilia in growth-arrested cells. Knockdown of Ajuba resulted in randomized left-right organ asymmetries and altered expression of early genes responsible for left-right body axis determination. At the cellular level, we found that Ajuba function was essential for ciliogenesis in the cells lining Kupffer’s vesicle; it is these cells that induce the asymmetric fluid flow required for left-right axis determination. Taken together, our findings identify a novel role for Ajuba in the regulation of vertebrate ciliogenesis and left-right axis determination.  相似文献   

4.
5.
Over the past 5 years, there has been increasing evidence for the role of primary (9+0) cilia in renal physiology and in establishing the left-right axis. The cilia in the renal tract are immotile and thought to have a sensory function. Cilia at the murine embryonic node have a vortical movement that sets up a leftward flow. Inversin, the protein defective in the inv mouse and in patients with type-2 nephronophthisis, localizes to both renal and node primary cilia. However, we present evidence that it is also expressed before the node forms and that its subcellular localization in renal tubular cells is not confined to the cilia. Its role in both the pathway determining left-right axis and renal function remains to be elucidated.  相似文献   

6.
7.
Cilia-generated fluid flow in an 'organ of asymmetry' is critical for establishing the left-right body axis in several vertebrate embryos. However, the cell biology underlying how motile cilia produce coordinated flow and asymmetric signals is not well defined. In the zebrafish organ of asymmetry-called Kupffer's vesicle (KV)-ciliated cells are asymmetrically positioned along the anterior-posterior axis such that more cilia are placed in the anterior region. We previously demonstrated that Rho kinase 2b (Rock2b) is required for anteroposterior asymmetry and fluid flow in KV, but it remained unclear how the distribution of ciliated cells becomes asymmetric during KV development. Here, we identify a morphogenetic process we refer to as 'KV remodeling' that transforms initial symmetry in KV architecture into anteroposterior asymmetry. Live imaging of KV cells revealed region-specific cell shape changes that mediate tight packing of ciliated cells into the anterior pole. Mathematical modeling indicated that different interfacial tensions in anterior and posterior KV cells are involved in KV remodeling. Interfering with non-muscle myosin II (referred to as Myosin II) activity, which modulates cellular interfacial tensions and is regulated by Rock proteins, disrupted KV cell shape changes and the anteroposterior distribution of KV cilia. Similar defects were observed in Rock2b depleted embryos. Furthermore, inhibiting Myosin II at specific stages of KV development perturbed asymmetric flow and left-right asymmetry. These results indicate that regional cell shape changes control the development of anteroposterior asymmetry in KV, which is necessary to generate coordinated asymmetric fluid flow and left-right patterning of the embryo.  相似文献   

8.
The study of left-right axis malformations in man and mouse has greatly advanced understanding of the mechanisms regulating vertebrate left-right axis formation. Recently, the roles of the TGF-beta family, Sonic hedgehog and fibroblast growth factor signaling, homeobox genes, and cilia in left-right axis determination have been more clearly defined. The identification of genes and environmental factors affecting left-right axis formation has important implications for understanding human laterality defects.  相似文献   

9.
Nodal factors play crucial roles during embryogenesis of chordates. They have been implicated in a number of developmental processes, including mesoderm and endoderm formation and patterning of the embryo along the anterior-posterior and left-right axes. We have analyzed the function of the Nodal signaling pathway during the embryogenesis of the sea urchin, a non-chordate organism. We found that Nodal signaling plays a central role in axis specification in the sea urchin, but surprisingly, its first main role appears to be in ectoderm patterning and not in specification of the endoderm and mesoderm germ layers as in vertebrates. Starting at the early blastula stage, sea urchin nodal is expressed in the presumptive oral ectoderm where it controls the formation of the oral-aboral axis. A second conserved role for nodal signaling during vertebrate evolution is its involvement in the establishment of left-right asymmetries. Sea urchin larvae exhibit profound left-right asymmetry with the formation of the adult rudiment occurring only on the left side. We found that a nodal/lefty/pitx2 gene cassette regulates left-right asymmetry in the sea urchin but that intriguingly, the expression of these genes is reversed compared to vertebrates. We have shown that Nodal signals emitted from the right ectoderm of the larva regulate the asymmetrical morphogenesis of the coelomic pouches by inhibiting rudiment formation on the right side of the larva. This result shows that the mechanisms responsible for patterning the left-right axis are conserved in echinoderms and that this role for nodal is conserved among the deuterostomes. We will discuss the implications regarding the reference axes of the sea urchin and the ancestral function of the nodal gene in the last section of this review.  相似文献   

10.
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.  相似文献   

11.
We demonstrate that the contractile ring protein anillin interacts directly with nonmuscle myosin II and that this interaction is regulated by myosin light chain phosphorylation. We show that despite their interaction, anillin and myosin II are independently targeted to the contractile ring. Depletion of anillin in Drosophila or human cultured cells results in cytokinesis failure. Human cells depleted for anillin fail to properly regulate contraction by myosin II late in cytokinesis and fail in abscission. We propose a role for anillin in spatially regulating the contractile activity of myosin II during cytokinesis.  相似文献   

12.
Baum B 《Current biology : CB》2006,16(13):R502-R504
Despite being bilaterally symmetric, most Metazoa exhibit clear, genetically determined left-right differences. In several animals, microtubule-based structures are thought to be the source of chiral information used to establish handedness. Now, two new studies in Drosophila identify a role for unconventional myosin motors in this process.  相似文献   

13.
Bilateran animals have external bilateral symmetry along the dorsoventral (DV) and anteroposterior (AP) axes. Internal left-right asymmetries appear to be consistently aligned along the left-right (LR) axis with respect to the other axes. Left-right development is most apparent in the directional looping of the cardiac tube, the coiling and placement of the intestines, the positioning of internal organs such as liver, gallbladder, pancreas, and stomach. In addition, there are obvious morphological asymmetries in the brains of some vertebrates and functional left-right asymmetries in the activities of the brain, as assessed by psychological testing, MRI, and the analysis of lesions. There are several fundamental questions: What are the origins of the left-right axis, and are they highly conserved across metazoans? Once the left-right axis is established by the initial breaking of bilateral symmetry, what is the genetic pathway that perpetrates left-right development? What are the cellular and tissue mechanics that lead to morphogenesis during, for example, the looping of the cardiac tube, the coiling of the gut, or asymmetric brain development? Finally, do the asymmetric developmental pathways of each organ system take register from the same initial event that establishes the left-right axis, or are there separate mechanisms that orient heart, gut, and brain left-right asymmetry with respect to the DV and AP axes? These questions are beginning to be experimentally addressed, and papers in this issue of Developmental Genetics make contributions to several aspects in the burgeoning field of left-right development. Recent reviews have summarized the emerging genes and pathways in vertebrate left-right development [Wood, 1997; Harvey, 1998; Ramsdell and Yost, 1998]. Here, I give an overview of the contributions in this issue to the fundamental questions in left-right development. Dev. Genet. 23:159–163, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
Centrosomes are the main microtubule (MT)-organizing centers in animal cells, but they also influence the actin/myosin cytoskeleton. The Drosophila CP190 protein is nuclear in interphase, interacts with centrosomes during mitosis, and binds to MTs directly in vitro. CP190 has an essential function in the nucleus as a chromatin insulator, but centrosomes and MTs appear unperturbed in Cp190 mutants. Thus, the centrosomal function of CP190, if any, is unclear. Here, we examine the function of CP190 in Cp190 mutant germline clone embryos. Mitosis is not perturbed in these embryos, but they fail in axial expansion, an actin/myosin-dependent process that distributes the nuclei along the anterior-to-posterior axis of the embryo. Myosin organization is disrupted in these embryos, but actin appears unaffected. Moreover, a constitutively activated form of the myosin regulatory light chain can rescue the axial expansion defect in mutant embryos, suggesting that CP190 acts upstream of myosin activation. A CP190 mutant that cannot bind to MTs or centrosomes can rescue the lethality associated with Cp190 mutations, presumably because it retains its nuclear functions, but it cannot rescue the defects in myosin organization in embryos. Thus, CP190 has distinct nuclear and centrosomal functions, and it provides a crucial link between the centrosome/MT and actin/myosin cytoskeletal systems in early embryos.  相似文献   

16.
17.
Our understanding of the means by which the left-right axis is patterned is not fully understood, although a number of key intermediaries have been recently described. We report here that retinoic acid (RA) excess affects heart situs concomitant with alterations in the expression of genes implicated in the establishment of the left-right axis. Specifically, RA exposure during a specific developmental window evoked bilateral expression of lefty-1, lefty-2, nodal, and pitx-2 in the lateral plate mesoderm. Time course experiments, together with analysis of midline markers, suggest that nascent mesoderm constitutes a predominant RA target involved in this process. These events are likely to underlie the perturbations of heart looping provoked by excess RA and suggest a means by which retinoids influence the early steps in establishment of the left-right embryonic axis.  相似文献   

18.
Force-producing convergence (narrowing) and extension (lengthening) of tissues by active intercalation of cells along the axis of convergence play a major role in axial morphogenesis during embryo development in both vertebrates and invertebrates, and failure of these processes in human embryos leads to defects including spina bifida and anencephaly. Here we use Xenopus laevis, a system in which the polarized cell motility that drives this active cell intercalation has been related to the development of forces that close the blastopore and elongate the body axis, to examine the role of myosin IIB in convergence and extension. We find that myosin IIB is localized in the cortex of intercalating cells, and show by morpholino knockdown that this myosin isoform is essential for the maintenance of a stereotypical, cortical actin cytoskeleton as visualized with time-lapse fluorescent confocal microscopy. We show that this actin network consists of foci or nodes connected by cables and is polarized relative to the embryonic axis, preferentially cyclically shortening and lengthening parallel to the axis of cell polarization, elongation and intercalation, and also parallel to the axis of convergence forces during gastrulation. Depletion of MHC-B results in disruption of this polarized cytoskeleton, loss of the polarized protrusive activity characteristic of intercalating cells, eventual loss of cell-cell and cell-matrix adhesion, and dose-dependent failure of blastopore closure, arguably because of failure to develop convergence forces parallel to the myosin IIB-dependent dynamics of the actin cytoskeleton. These findings bridge the gap between a molecular-scale motor protein and tissue-scale embryonic morphogenesis.  相似文献   

19.
The heart develops from a linear tubular precursor, which loops to the right and undergoes terminal differentiation to form the multichambered heart. Heart looping is the earliest manifestation of left-right asymmetry and determines the eventual heart situs. The signalling processes that impart laterality to the unlooped heart tube and thus allow the developing organ to interpret the left-right axis of the embryo are poorly understood. Recent experiments in zebrafish led to the suggestion that bone morphogenetic protein 4 (BMP4) may impart laterality to the developing heart tube. Here we show that in Xenopus, as in zebrafish, BMP4 is expressed predominantly on the left of the linear heart tube. Furthermore we demonstrate that ectopic expression of Xenopus nodal-related protein 1 (Xnr1) RNA affects BMP4 expression in the heart, linking asymmetric BMP4 expression to the left-right axis. We show that transgenic embryos overexpressing BMP4 bilaterally in the heart tube tend towards a randomisation of heart situs in an otherwise intact left-right axis. Additionally, inhibition of BMP signalling by expressing noggin or a truncated, dominant negative BMP receptor prevents heart looping but allows the initial events of chamber specification and anteroposterior morphogenesis to occur. Thus in Xenopus asymmetric BMP4 expression links heart development to the left-right axis, by being both controlled by Xnr1 expression and necessary for heart looping morphogenesis.  相似文献   

20.
Vertebrates exhibit evolutionarily conserved asymmetries in the pattern of internal organ placement that are essential for their normal physiological function. Left-right asymmetries in organ situs are dependent upon the formation of an intact left-right axis during embryogenesis. Recently many of the molecular components involved in the initiation and maintenance of the left-right axis have been described. These molecules and their function in promoting left-right asymmetries are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号