首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Experiments performed on the Cu(II), Pb(II), and Zn(II) binding by saltbush biomass (Atriplex canescens) showed that the metal binding increased as pH increased from 2.0 to 5.0. The highest amounts of Cu, Pb, and Zn bound by the native biomass varied from 48-89%, 89-94%, and 65-73%, respectively. The hydrolyzed biomass bound similar amount of Pb and 50% more Cu and Zn than the native. The esterified biomass had a lower binding capacity than native; however, esterified flowers bound 45% more Cu at pH 2.0 than native flowers. The optimum binding time was 10 min or less. More than 60% of the bound Cu was recovered using 0.1 mM HCl, while more than 90% of Pb was recovered with either HCl or sodium citrate at 0.1 mM. For Zn, 0.1 mM sodium citrate allowed the recovery of 75%. Results indicated that carboxyl groups participate in the Cu, Pb, and Zn binding.  相似文献   

2.
The aim of this article was to investigate the interactions of metal cations in aqueous solutions with the biomass of the freshwater macroalga Vaucheria sp. This problem is important when elaborating new applications of biosorption, e.g. the production of mineral feed additives for livestock from the biomass of algae enriched with microelement ions. Potentiometric titration was applied as a quick and cheap screening test to search for new efficient biosorbents. It revealed a variety of functional groups capable of cation exchange on the macroalgal surface, including carboxyl, phosphate, hydroxyl or amino groups. Fourier transform infrared spectroscopy on natural and chromium‐loaded Vaucheria sp. confirmed that carboxyl groups played a dominant role in the biosorption. The study also showed that Ca(II), Na(I), K(I), and Mg(II) ions were released from the biomass after biosorption of Cu(II), Mn(II), Zn(II), and Co(II) ions, indicating that ion exchange was a key mechanism in the biosorption of metal ions by Vaucheria sp. biomass. It was noticed that the mass of the microelement cations bound by the macroalga was proportional to the total mass of light metal ions [Na(I), K(I), Ca(II), and Mg(II)] released from the biomass.  相似文献   

3.
Elsholtzia splendens is a Cu-tolerant plant growing in copper mine areas in the south of China. In this study, X-ray absorption spectroscopy (XAS) was used to investigate the Cu speciation and biotransformation in E. splendens with 300 μM Cu treatment from 10 days to 60 days. The results showed that 300 μM Cu was phytotoxic to E. spendens. The Cu K-edge X-ray absorption near edge structure (XANES) revealed that most copper in roots, stems and leaves exists as divalent Cu. Cu speciation changed depending on the treatment time, but there was no unidirectional trend in roots, stems, and leaves. The percentages of potential Cu ligands in all samples were estimated by fitting the XANES spectra with linear combinations. Most Cu in roots, stems and leaves was bound with cell wall and histidine (His)-like ligands, while a minor proportion of the Cu was bound to oxalate and glutathione-like ligands. The fitting results of Cu K-edge extended X-ray absorption fine structure (EAXFS) showed that nitrogen/oxygen (N/O) ligands were dominant in roots, stems and leaves of the plant, while S ligands were rare. All these results suggest that Cu bound by N/O ligands plays a key role in Cu detoxification of E. splendens, and a role for classical metal-detoxifying S ligands, such as metallothioneins and phytochelatins, in Cu detoxification of E. splendens is not supported in the present study. Due to the phytotoxicity of 300 μM Cu to E. splendens, the question of whether S ligands play a significant role in Cu detoxification in E. splendens exposed to lower levels of Cu should be further studied.  相似文献   

4.
Chen X  Hu S  Shen C  Dou C  Shi J  Chen Y 《Bioresource technology》2009,100(1):330-337
The present study was conducted to determine the abilities of the living and nonliving Pseudomonas putida CZ1 cells, clays (goethite, kaolinite, smectite and manganite) and their composites to accumulate copper and zinc from a liquid medium, and elucidate the role of microbes on the mobility of heavy metals. Various mixtures of bacteria and clays were exposed to solutions of 0.025 mM or 0.5mM Cu(II) and Zn(II) in 0.01M KNO(3) to differentiate between so-called "high-affinity" sites and "low-affinity" sites. Clays associated in an edge-on orientation to the cells was observed by electron microscope (EM) examination of these metal-treated bacteria-clay aggregates. Adsorption experiments and desorption with 1.0M CH(3)COOK solution indicated that clays contain more high-affinity copper binding sites and less high-affinity zinc binding sites than that of bacteria, however, bacteria are involved in more low-affinity heavy-metal-binding sites. Carboxyl group activity is more important at weak-binding sites than at strong-binding sites. TEM-EDS analysis confirmed that most of Zn removed from solution was associated with P. putida CZ1 in the composites. These results suggest that bacteria play an important role in regulating the mobility of heavy metals in the soil environment.  相似文献   

5.
Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant.  相似文献   

6.
Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant.  相似文献   

7.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

8.
The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The effect of extracellular polymeric substances (EPS) of Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida on Cu(II) adsorption was investigated using a combination of batch adsorption, potentiometric titrations, Fourier transform infrared spectroscopy. Both the potentiometric titrations and the Cu(II) adsorption experiments indicated that the presence of EPS in a biomass sample significantly enhance Cu(II) adsorption capacity. Surface complexation modeling showed that the pKa values for the three functional groups (carboxyl, phosphate and hydroxyl) were very similar for untreated and EPS-free cells, indicating no qualitative difference in composition. However, site concentrations on the untreated cell surface were found to be significantly higher than those on the EPS-free cell surface. Infrared analysis provided supporting evidence and demonstrated that carboxyl and phosphate groups are responsible for Cu(II) adsorption on the native and EPS-free cells.  相似文献   

10.
Extended X-ray absorption fine structure studies of the metallo-β-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal–metal interaction at 3.42 Å. Reaction with the β-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates in the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn–Zn interaction to 3.62 Å.  相似文献   

11.
In the present paper, the possibility of the application of marine macroalga Ulva (Enteromorpha) prolifera, as microelemental feed supplement for livestock, was evaluated. The concept was based on two facts: the natural macroalga contains high concentrations of microelements and there is a possibility to greatly increase this content via biosorption. In order to characterize the biosorption process of metal ions by U. prolifera, preliminary experiments were conducted with Cr(III) ions. The effect of temperature, pH and the biomass concentration on the equilibrium of biosorption was investigated. For further experiments (biosorption of Mn(II), Zn(II), Cu(II), Co(II)), the following experimental conditions were chosen: pH 5, 25°C, the biomass concentration 1.0 g l−1. Equilibrium of the biosorption process could be described by the Langmuir equation. The theoretical maximum biosorption capacity was also determined by potentiometric titration of the biomass. The investigation of the external structure of the macroalga and atomic concentration of elements on the surface of the biomass was analyzed using scanning electron microscopy. The content of microelements in the biomass after biosorption increased 110,555; 44,228; 21,177; 2,281 and 1,458 times for Co(II), Cr(III),Cu(II), Zn(II), Mn(II), respectively. Therefore, biomass of U. prolifera enriched with individual microelements, mixed in the proper proportion could be used as feed supplement in animal feeding to cover the nutrient requirements for microelements.  相似文献   

12.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

13.
Summary The ability of Pseudomonas aeruginosa to accumulate Cd(II) ions from wastewater industries was experimentally investigated and mathematically modelled. From the potentiometric titration and non-ideal competitive analysis (NICA) model, it was found that the biomass contains three acidic sites. The values of proton binding (pK i =1.66±3.26×10−3, 1.92±1.63×10−4 and 2.16±3.79×10−4) and binding constant of cadmium metal ions (pK M1=1.99±2.45×10−3 and pK M2=1.67±4.08×10−3) on the whole surface of biomass showed that protonated functional groups and biosorption of Cd(II) ions could be attributed to a monodentate binding to one acidic site, mainly the carboxylic group. From the isothermal sorption experimental data and Langmuir model, it was also found that the value of Langmuir equilibrium (pK f) constant is 2.04±2.1×10−5 suggesting that the carboxyl group is the main active binding site. In addition, results showed that the maximum cadmium capacity (q max) and affinity of biomass towards cadmium metal ions (b) at pH 5.1 and 20 min were 96.5±0.06 mg/g and 3.40×10−3± 2.10×10−3, respectively. Finally, interfering metal ions such as Pb(II), Cu(II), Cr(III), Zn(II), Fe(II), Mn(II), Ca(II) and Mg(II) inhibited Cd(II) uptake. Comparing the biosorption of Cd(II) by various Pseudomonas isolates from contaminated environment samples (soil and sewage treatment plant) showed that maximum capacities and equilibrium times were different, indicating that there was a discrepancy in the chemical composition between biomasses of different strains.  相似文献   

14.
K Zhang  L Song  J Dong    M A El-Sayed 《Biophysical journal》1997,73(4):2097-2105
The binding of Zn2+ in Zn2+-regenerated bacteriorhodopsin (bR) was studied under various conditions by x-ray absorption fine structures (XAFS). The 0.9:1 and 2:1 Zn2+:bR samples gave similar XAFS spectra, suggesting that Zn2+ might have only one strong binding site in bR. It was found that in aqueous bR solution, Zn2+ has an average of six oxygen or nitrogen ligands. Upon drying, two ligands are lost, suggesting the existence of two weakly bound water ligands near the cation-binding site in bacteriorhodopsin. When excess Cl- ions were present before drying in the Zn2+-regenerated bR samples, it was found that two of the ligands were replaced by Cl- ions in the dried film, whereas two remain unchanged. The above observations suggest that Zn2+ has three types of ligands in regenerated bR (referred to as types I, II, and III). Type I ligands are strongly bound. These ligands cannot be removed by drying or by exchanging with Cl- ions. Type II ligands cannot be removed by drying, but can be replaced by Cl- ligands. Type III ligands are weakly bound to the metal cation and are most likely water molecules that can be removed by evaporation under vacuum or by drying with anhydrous CaSO4. The results are discussed in terms of the possible structure of the strongly binding site of Zn2+ in bR.  相似文献   

15.
The potential use of the immobilized Mentha arvensis distillation waste (IMADW) biomass for removal and recovery of Cu(II) and Zn(II) from aqueous was evaluated in the present study. Biosorption capacity of Cu(II) and Zn(II) on IMADW increased with increase in pH reaching a maximum at 5 for Cu(II) and 6 for Zn(II). The equilibrium sorption data agreed well with Langmuir isotherm model and pseudo-second-order kinetic model in batch mode. Cu(II) and Zn(II) uptake by IMADW was best described by pseudo-first-order kinetic model in continuous mode. Maximum Cu(II) and Zn(II) uptake by IMADW was 104.48 and 107.75 mg/g, respectively. Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also carried out to investigate functional groups and surface changes of biomass. The results showed that IMADW biomass is a potential biomaterial to remove Cu(II) and Zn(II) ions with a high biosorption capacity from aqueous solutions.  相似文献   

16.
Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.  相似文献   

17.
In this paper we report a systematic XAS study of a set of samples in which Cu(II) was progressively added to complexes in which Zn(II) was bound to the tetra-octarepeat portion of the prion protein. This work extends previous EPR and XAS analysis in which, in contrast, the effect of adding Zn(II) to Cu(II)–tetra-octarepeat complexes was investigated. Detailed structural analysis of the XAS spectra taken at both the Cu and Zn K-edge when the two metals are present at different relative concentrations revealed that Zn(II) and Cu(II) ions compete for binding to the tetra-octarepeat peptide by cross-regulating their relative binding modes. We show that the specific metal–peptide coordination mode depends not only, as expected, on the relative metal concentrations, but also on whether Zn(II) or Cu(II) was first bound to the peptide. In particular, it seems that the Zn(II) binding mode in the absence of Cu(II) is able to promote the formation of small peptide clusters in which triplets of tetra-octarepeats are bridged by pairs of Zn ions. When Cu(II) is added, it starts competing with Zn(II) for binding, disrupting the existing peptide cluster arrangement, despite the fact that Cu(II) is unable to completely displace Zn(II). These results may have a bearing on our understanding of peptide-aggregation processes and, with the delicate cross-regulation balancing we have revealed, seem to suggest the existence of an interesting, finely tuned interplay among metal ions affecting protein binding, capable of providing a mechanism for regulation of metal concentration in cells.  相似文献   

18.
The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain approximately 50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 degrees C but trace amount at high (30 degrees C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 degrees C and 10 degrees C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q (max)) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 degrees C and 10 degrees C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season.  相似文献   

19.
Biosorptive capacity of Pb(II), Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms. Biosorptive capacity for Pb(II), Cd(II) and Cu(II) decreased with an increase of metal concentration, reaching 142, 43.5 and 36.2 mg/g at initial concentration of 300 mg/l, respectively. Biosorption capacity for metal ions increased with increasing pH. The optimum pH for biosorption rate of Cd(II) and Cu(II) were 5.0, and 6.0 for Pb(II) biosorption. The experimental data showed a better fit with the Langmuir model over the Freundlich model for metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Pb(II), Cd(II) and Cu(II) were 153.3 (r 2  = 0.998), 43.86 (r 2  = 0.995), and 33.16 (r 2  = 0.997) for metal ions, respectively. The selectivity order for metal ions towards the biomass of P. stutzeri was Pb(II) > Cd(II) > Cu(II) for a given initial metal ions concentration. The interactions between heavy metals and functional groups on the cell wall surface of bacterial biomass were confirmed by FTIR analysis. The results of this study indicate the possible removal of heavy metals from the environment by using lyophilized cells of P. stutzeri.  相似文献   

20.
The binding of copper(II) and zinc(II) to oxidized glutathione   总被引:1,自引:0,他引:1  
1H and 13C NMR studies of Zn(II) binding to oxidized glutathione (GSSG) in aqueous solution over the pH range 4-11 show that it forms a complex with a 1:1 Zn:GSSG stoichiometry. At pH values between 6 and 11 the metal ligands are the COO- and NH2 groups of the glutamate residues. Below pH 5 the glycine end of the molecule also binds to the metal ions. EPR and visible absorption spectra of Cu(II) GSSG solutions suggest that similar complexes are formed with Cu(II). The solid products obtained from these solutions are shown by analysis and EPR to be primarily binuclear with Cu2GSSG stoichiometry, although the structures depend on the pH and stoichiometry of the solution from which they were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号