首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most convenient methods for the fast and efficient production of target proteins in plants involves self-replicating recombinant viral vectors. We have constructed a plant viral vector based on the genome of the potato X virus. This vector contains the sequence of the 5′-untranslated region of RNA 4 of the alfalfa mosaic virus immediately upstream of the target gene. The incorporation of this sequence into the viral vector increases the production of the target protein by the recipient plant three- to fourfold owing to the increased efficiency of translation of viral subgenomic RNA comprising the target gene. The new vector can be used for the production of recombinant proteins in plants. Original Russian Text ? E.S. Mardanova, R.Yu. Kotlyarov, N.V. Ravin, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 3, pp. 568–571.  相似文献   

2.
A new potato virus X (PVX)-based viral vector for superproduction of target proteins in plants has been constructed. The triple gene block and coat protein gene of PVX were substituted by green fluorescent protein. This reduced viral vector was delivered into plant cells by agroinjection (injection of Agrobacterium tumefaciens cells, carrying viral vector cDNA within T-DNA, into plant leaves), and this approach allowed to dramatically reduce the size of the vector genome. The novel vector can be used for production of different proteins including pharmaceuticals in plants.  相似文献   

3.
4.
Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy‐to‐use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market.  相似文献   

5.
Several optical methods and differential scanning calorimetry were used to study the structure and stability of free coat protein (CP) molecules and CP molecules in the virion of the potato virus X (PVX), a filamentous plant virus. All criteria suggest that PVX CP (hereinafter, CP) subunits in solution at room temperature display a certain preserved tertiary structure; however, this structure is very unstable and already denatures at 35°C. Very low concentrations of sodium dodecylsulfate or cetyltrimethylammonium bromide also disrupt the CP tertiary structure, three-five molecules of these detergents per one protein molecule being sufficient. However, the secondary structure of CP molecules does not change under the same conditions. Once included into the virion, CP subunits become considerably more stable towards increased temperature and detergents. This combination of a highly labile tertiary structure and a fairly stable secondary structure of free CP can be a structural basis for the recently discovered ability of PVX CP to assume two distinct functional states within the virion.  相似文献   

6.
A modified model was proposed for the tertiary structure of the coat protein (CP) molecules in potato virus X (PVX) virions, similar to the original model of 2001 describing the structure of CP of potato virus A, a member of another group of filamentous viruses. According to the new model, CP comprises two main structural domains, namely, a bundle of α-helices, located near the long axis of the virion, and the socalled RNP fold (or abCd fold), located in the vicinity of its surface. The model made it possible to suggest a possible mechanism of the PVX virion structural rearrangement (remodeling) resulting from translational activation of virions by the TGB1 movement protein according to Atabekov and colleagues.  相似文献   

7.
8.
Transgenic potato plants, cultivar Désirée, were produced that contained the coat protein gene of potato leafroll luteovirus (PLRV). The transformed potato plants expressed the PLRV coat protein (CP) RNA sequences but accumulation of coat protein in transgenic tissues could not be detected. Upon inoculation with PLRV, the PLRV CP RNA expressing potato plants showed a reduced rate of virus multiplication.  相似文献   

9.
A 25-kD movement protein (25K protein) encoded by the first gene of the potexvirus Potato virus X triple gene block of transport genes is essential for the viral movement in infected plants. The 25K protein belongs to superfamily 1 of NTPase/helicases and exhibits in vitro RNA helicase, Mg2+-dependent NTPase, and RNA-binding activities. In the present work, the ability of 25K protein for homologous interactions was studied using the yeast two-hybrid system, protein chemical cross-linking in the presence of glutaraldehyde, far-Western blotting, and ultracentrifugation in sucrose density gradients. The 25K protein was shown to form homodimers and homooligomers. Sites of homologous protein-protein interactions were found in both the N- and C-terminal portions of the protein.  相似文献   

10.
Recently we have reported that a selective binding of potato virus X (PVX)-coded movement protein (termed TGBp1 MP) to one end of a polar coat protein (CP) helix converted viral RNA into a translatable form and induced a linear destabilization of the whole helical particle. Here, the native PVX virions, RNase-treated (PVX(RNA-DEG)) helical particles lacking intact RNA and their complexes with TGBp1 (TGBp1-PVX and TGBp1-PVX(RNA-DEG)), were examined by atomic force microscopy (AFM). When complexes of the TGBp1 MP with PVX were examined by means of AFM in liquid, no structural reorganization of PVX particles was observed. By contrast, the products of TGBp1-dependent PVX degradation termed "beads-on-string" were formed under conditions of AFM in air. The AFM images of PVX(RNA-DEG) were indistinguishable from images of native PVX particles; however, the TGBp1-dependent disassembly of the CP-helix was triggered when the TGBp1-PVX(RNA-DEG) complexes were examined by AFM, regardless of the conditions used (in air or in liquid). Our data supported the idea that binding of TGBp1 to one end of the PVX CP-helix induced linear destabilization of the whole helical particle, which may lead to its disassembly under conditions of AFM.  相似文献   

11.
12.
The efficiency of in vitro translation of the potato virus X (PVX) RNA was studied for viral ribonucleoprotein complexes (vRNP) assembled from the genomic RNA and the viral coat protein (CP). In vRNP particles the 5′-proximal RNA segments were encapsidated into the CP, which formed helical headlike structures differing in length. Translation of the PVX RNA was completely suppressed upon incubation with PVX CP and was activated within vRNPs assembled in vitro with two CP forms, differing in the modification of the N-terminal peptide containing the main phosphorylation site(s) for Thr/Ser protein kinases. It was shown that CP phosphorylation activates RNA translation within vRNPs and that the removal of the N-terminal peptide of CP suppresses activation, but CP still acts as a translational suppressor. This fact made it possible to suppose that the replacement of Ser/Thr by amino acid residues that are not subject to phosphorylation in the N-terminal peptide of CP of the mutant PVX (PVX-ST) completely inhibits RNA translation within vRNP. However, experiments disproved this assumption: PVX-ST RNA was efficiently translated within native virions, RNA of the wild-type (wt) PVX was efficiently translated in heterogeneous vRNP (wtRNA + PVX-ST CP), and the opposite result (repression of translation) was obtained for another heterogeneous vRNP (PVX-ST RNA + wtCP). Therefore, the N-terminal CP peptide located on the surface of the PVX virion or vRNP particles plays a key role in the activation of viral RNA translation.  相似文献   

13.
HBNU/LSRC/F3, a Newcastle disease virus (NDV) strain stored in our lab, exhibited an anti-tumor ability in our previous studies. Nonetheless, very little is known about its genome sequence, which is vital for further study. Here, the complete HBNU/LSRC/F3 genome was fully sequenced and compared with other NDV sequences. Its genome contained 15,192 nucleotides (nt) consisting of two termini and six genes in the following order: 3′-Le-NP-P-M-F-HN-L-Tr-5′. Phylogenetic analysis indicated that this NDV strain belonged to the Class II genotype IX group. A multibasic amino acid (aa) sequence was found at the cleavage site (112RRQRR↓F117) within the fusion (F) protein, and a 6 nt insertion was present in the 5′ non-coding region of the NP gene. The whole genome sequence was highly similar to other genotype IX NDV genomes reported in China. Overall, this study provides insight into the sequence characteristics of genotype IX NDVs, which will be useful for subsequent investigations.  相似文献   

14.
15.
X.-Q. Yu  H.-Y. Wang  Y.-F. Lan    X.-P. Zhu    X.-D. Li    Z.-F. Fan    H.-F. Li    Y.-Y. Wang 《Journal of Phytopathology》2008,156(6):346-351
The complete genomic sequence of a Chinese Potato virus X isolate FX21 (PVX‐FX21) was determined from three overlapping cDNA clones. The genome of PVX‐FX21 is 6435 nucleotides in length excluding the poly(A) tail and contains five open reading frames (ORFs). Its entire genomic sequence shares 95.2–96.3% identities with Asian and European isolates, and 77.3–77.8% with American isolates. Phylogenetic analysis of the complete genomic sequence reveals two groups: the Eurasian group and the American group. PVX‐FX21 belongs to the Eurasian group and forms a separate sub‐branch with three Asian isolates. Similar analyses of the coat protein genes of 37 PVX isolates also reveal two major groups. All PVX isolates from Asia are clustered to group I, whereas isolates from Europe and America are clustered to both groups. Nucleotide sequence diversity analyses show that there is no geographical differentiation between PVX isolates and that constraint on the ORF encoding RNA‐dependent RNA polymerase is much higher than those on the other four ORFs.  相似文献   

16.
Antibodies have been expressed in plants to confer novel traits such as virus resistance or altered phenotype. However, not every antibody is suitable for plant expression, and successful intracellular expression of antibody fragments depends primarily on their amino acid sequence in a way that is as yet unpredictable. Therefore it is desirable to assess different constructs before embarking on the production of transgenic plants. We have used a transient expression system based on potato virus X to compare different cDNA constructs for expression and stability of antibody variable gene fragments in plants. Constructs contained an anti-plant enzyme (granule-bound starch synthase I) scFv sequence derived from a naive phage display library together with different combinations of sequences encoding the human IgG constant domain, a murine IgG secretory signal sequence, or the endoplasmic reticulum retention signal peptide KDEL. The results obtained with the potato virus X vector correlated with those from Agrobacterium-mediated stable transformation of potato. The best expression levels were obtained by incorporating sequences that target scFv to the lumen of the endoplasmic reticulum and the secretory pathway. The anti-enzyme scFv retained activity during storage of potato tubers for more than five months. The results demonstrate the utility of the potato virus X vector for the analysis and comparison of many scFv with different epitope specificities or sequence modifications. Evaluation of scFv by transient expression from the PVX vector should aid progress in selection of functional scFv for applications in plant biotechnology.  相似文献   

17.
Dengue virus (DENV) infections represent a significant concern for public health worldwide, being considered as the most prevalent arthropod-borne virus regarding the number of reported cases. In this study, we report the complete genome sequencing of a DENV serotype 4 isolate, genotype II, obtained in the city of Manaus, directly from the serum sample, applying Ion Torrent sequencing technology. The use of a massive sequencing technology allowed the detection of two variable sites, one in the coding region for the viral envelope protein and the other in the nonstructural 1 coding region within viral populations.  相似文献   

18.
A plant virus vector for systemic expression of foreign genes in cereals   总被引:4,自引:0,他引:4  
Inserts bearing the coding sequences of NPT II and beta-glucuronidase (GUS) were placed between the nuclear inclusion b (NIb) and coat protein (CP) domains of the wheat streak mosaic virus (WSMV) polyprotein ORF. The WSMV NIb-CP junction containing the nuclear inclusion a (NIa) protease cleavage site was duplicated, permitting excision of foreign protein domains from the viral polyprotein. Wheat, barley, oat and maize seedlings supported systemic infection of WSMV bearing NPT II. The NPT II insert was stable for at least 18-30 days post-inoculation and had little effect on WSMV CP accumulation. Histochemical assays indicated the presence of functional GUS protein in systemically infected wheat and barley plants inoculated with WSMV bearing GUS. The GUS constructs had greatly reduced virulence on both oat and maize. RT-PCR indicated that the GUS insert was subject to deletion, particularly when expressed as a GUS-NIb protein fusion. Both reporter genes were expressed in wheat roots at levels comparable to those observed in leaves. These results clearly demonstrate the utility of WSMV as a transient gene expression vector for grass species, including two important grain crops, wheat and maize. The results further indicate that both host species and the nature of inserted sequences affect the stability and expression of foreign genes delivered by engineered virus genomes.  相似文献   

19.
20.
Tubers of eight potato clones infected with potato leafroll luteovirus (PLRV) were planted as ‘infectors’ in a field crop grown, at Invergowrie, of virus-free potato cv. Maris Piper in 1989. The mean PLRV contents of the infector clones, determined by enzyme-linked immunosorbent assay (ELISA) of leaf tissue, ranged from c. 65 to 2400 ng/g leaf. Myzus persicae colonised the crop shortly after shoot emergence in late May and established large populations on all plants, exceeding 2000/plant by 27 June. Aphid infestations were controlled on 30 June by insecticide sprays. Aphid-borne spread of PLRV from plants of the infector clones was assessed in August by ELISA of foliage samples from the neighbouring Maris Piper ‘receptors’. Up to 89% infection occurred in receptor plots containing infector clones with high concentrations of PLRV. Spread was least (as little as 6%) in plots containing infectors in which PLRV concentrations were low. Primary PLRV infection in guard areas of the crop away from infectors was 4%. Some receptor plants became infected where no leaf contact was established with the infectors, suggesting that some virus spread may have been initiated by aphids walking across the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号