首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Microglia are mononuclear phagocytes of the central nervous system and are considered to derive from circulating bone marrow progenitors that colonize the developing human nervous system in the second trimester. They first appear as ameboid forms and progressively differentiate to process-bearing "ramified" forms with maturation. Signals driving this transformation are known to be partly derived from astrocytes. In this investigation we have used cocultures of astrocytes and microglia to demonstrate the relationship between motility and morphology of microglia associated with signals derived from astrocytes. Analysis of progressive cultures using time-lapse video microscopy clearly demonstrates the dynamic nature of microglia. We observe that ameboid microglial cells progressively ramify when cocultured with astrocytes, mirroring the "differentiation" of microglia in situ during development. We further demonstrate that individual cells undergo morphological transformations from "ramified" to "bipolar" to "tripolar" and "ameboid" states in accordance with local environmental cues associated with astrocytes in subconfluent cultures. Remarkably, cells are still capable of migration at velocities of 20-35 microm/h in a fully ramified state overlying confluent astrocytes, as determined by image analysis of motility. This is in keeping with the capacity of microglia for a rapid response to inflammatory cues in the CNS. We also demonstrate selective expression of the chemokines MIP-1alpha and MCP-1 by confluent human fetal astrocytes in cocultures and propose a role for these chemotactic cytokines as regulators of microglial motility and differentiation. The interchangeable morphological continuum of microglia supports the view that these cells represent a single heterogeneous population of resident mononuclear phagocytes capable of marked plasticity.  相似文献   

2.
The central nervous system produces growth factors that stimulate proliferation of ameboid microglia during embryogenesis and after traumatic injury. Two microglial mitogens (MMs) are recovered from the brain of newborn rat. MM1 has an approximate molecular mass of 50 kD and a pI of approximately 6.8; MM2 has a molecular mass of 22 kD and a pI of approximately 5.2. These trypsin-sensitive proteins show specificity of action upon glia in vitro serving as growth factors for ameboid microglia but not astroglia or oligodendroglia. Although the MMs did not stimulate proliferation of blood monocytes or resident peritoneal macrophage, MM1 shows granulocyte macrophage colony-stimulating activity when tested upon bone marrow progenitor cells. Microglial mitogens may help to control brain mononuclear phagocytes in vivo. The MMs first appear in the cerebral cortex of rat during early development with peak levels around embryonic day E-20, a period of microglial proliferation. Microglial mitogens are also produced by traumatized brain of adult rats within 2 d after injury. When infused into the cerebral cortex, MM1 and MM2 elicit large numbers of mononuclear phagocytes at the site of injection. In vitro study shows that astroglia from newborn brain secrete MM2. These observations point to the existence of a regulatory system whereby secretion of proteins from brain glia helps to control neighboring inflammatory responses.  相似文献   

3.
C Kaur  E A Ling  W C Wong 《Acta anatomica》1989,136(3):204-210
The present quantitative study in the postnatal rats showed the rapid growth of the various glial cell types in the cerebral cortex. Among them, the increase of microglia was most dramatic. The increase was about 15 times, covering a period of 15 days extending from 5 days of age to 20 days. The majority of the microglia observed were in the outer third of the cortex. During the same period, the number of oligodendrocytes and astrocytes also showed a steady but moderate increase. The increase of oligodendrocytes was most significant between 5 and 10 days. Their density was greater in the inner third of the cortex. Astrocytes were distributed uniformly throughout. Examination of the cerebral cortex in 1- to 3-day-old rats by electron microscopy showed sporadic ameboid microglia cells and glioblasts. The possibility that they served as the precursor cells of microglia and macroglia (astrocytes and oligodendrocytes), respectively, was considered.  相似文献   

4.
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.  相似文献   

5.
Ovaries of adult Japanese quails were exposed in vivo to the exogenous protein horseradish peroxidase (HRP) for varying lengths of time to investigate ultrastructurally the permeability of the wall of these follicles, the protein uptake capacity of granulosa and oocyte and the kinetics of protein uptake in different stages. There is a sudden increase in permeability of the follicle wall from previtellogenesis to vitellogenesis. This is not due to a loss of sealing (tight) junctions in the granulosa cell layer, but is probably related to a permeability change in the basement membrane. The transition from the slow growth phase to the rapid growth during vitellogenesis is accompanied by a limited widening of the intercellular channels and the concomitant development of a complex endocytotic apparatus in the ooplasm. The slowing down of yolk deposition during the last day before ovulation is accompanied by a narrowing of the intercellular channel width. The granulosa cells show a high intracellular HRP uptake during intermediary yolk formation. Transcytosis through the granulosa cannot be excluded but is probably a minor pathway at certain stages. The light microscopically detectable uptake of HRP by the oocyte coincides with the start of exogenous vitellogenesis. After 90 sec of exposure to HRP (intravenous injection) the tracer can be found in the intercellular channels of the granulosa and in superficially located yolk spheres. On the other hand it takes 10 min for the tracer to traverse the cortex of the oocyte.  相似文献   

6.
Synopsis Ultrastructural features of the epidermis and rectum were studied inSebastes schlegeli andS. melanops during the late stages of embryonic development, to confirm uptake of maternal substances. Ruthenium red (RR) and horseradish peroxidase (HRP) were used at fixation and in live embryos, respectively. Epidermal tissue of embryos after developmental stage 24 comprised two squamous cell layers. The outer, thinner cells and their intercellular spaces were easily infiltrated with RR, but the inner cells had no RR deposition. The HRP was not incorporated into the epidermis except in a few outer cells, which had well-developed microvillous projections of cytoplasm. Sacciform cells, chloride cells, and mucous cells distributed in the inner layer but protruding to the epidermal surface had no intracellular RR and HRP depositions. The rectal cells of embryos at about developmental stage 28 had many globular inclusions containing electron-dense substances. The rectal cells were found to take up and digest HRP actively. It is suggested that the embryonic epidermis is structurally loose and takes up low weight molecules, while rectal cells, after the opening of the mouth, actively ingest exogenous, high weight molecules.  相似文献   

7.
We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.  相似文献   

8.
Ameboid cells in spermatogenic cysts of caecilian testis   总被引:1,自引:0,他引:1  
Sertoli cells constitute a permanent feature of the testis lobules in caecilians irrespective of the functional state of the testis. The developing germ cells are intimately associated with the Sertoli cells, which are adherent to the basal lamina, until spermiation. There are irregularly shaped cells in the cores of the testis lobules that interact with germ cells at the face opposite to their attachment with Sertoli cells. These irregularly shaped (ameboid) cells first appear in the lumen of the cysts containing primary spermatocytes and are continually present until spermiation. We did not observe any cytoplasmic continuity between a Sertoli cell and an ameboid cell. Both light microscopic and TEM observations reveal a phagocytic role for the ameboid cells: they scavenge the residual bodies shed by spermatozoa. Organization of the ameboid cells is grossly different from that of the spermatogenic and Sertoli cells. They appear to develop from the epithelium at the juncture of the collecting ductule with the testis lobule.  相似文献   

9.
Cholera toxin (CT) covalently linked to horseradish peroxidase (HRP) is a specific cytochemical marker for its receptor, the monosialoganglioside GM1. The binding and endocytosis of exogenous [3H]GM1 by cultured murine neuroblastoma cells (line 2A [CCl-131] ), which contain predominantly GM3, was examined by quantitative electron microscope autoradiography. The relationship between exogenous receptor, [3H]GM1, and CT HRP was studied in double labeling experiments consisting of autoradiographic demonstration of [3H]GM1 and cytochemical visualization of HRP. Exogenous [3H]GM1 was not degraded after its endocytosis by cells for 2 h at 37 degrees C. Quantitative studies showed similar grain density distributions in cells treated with [3H]GM1 alone and in cells treated with [3H]GM1 followed by CT-HRP. Qualitative studies conducted in double labeling experiments showed autoradiographic grains over the peroxidase-stained plasma membrane, lysosomes, and vesicles at the trans aspect of the Golgi apparatus. The findings indicate that exogenous glycolipid is associated with the plasmid membrane of deficient cells and undergoes endocytosis. The quantitative ultra-structural autoradiographic studies are consistent with the hypothesis that the spontaneous endocytosis of exogenous [3H]GM1 controls the subsequent uptake of CT-HRP.  相似文献   

10.
The secretory membrane activities of two rat prostate cancer cell lines of markedly different metastatic potential, and corresponding electrophysiological characteristics, were studied in a comparative approach. In particular, voltage-gated Na(+) channels (VGSCs) were expressed in the strongly metastatic MAT-LyLu but not in the closely related, but weakly metastatic, AT-2 cells. Uptake and release of the non-cytotoxic marker horseradish peroxidase (HRP) were used as indices of general endocytotic and exocytotic membrane activity, respectively. The amount of tracer present in a given experimental condition was quantified by light microscopic digital imaging. The uptake of HRP was an active process, abolished completely by incubating the cells at low temperature (5 degrees C) and suppressed by disrupting the cytoskeleton. Interestingly, the extent of HRP uptake into the strongly metastatic MAT-LyLu cells was almost twice that into the weakly metastatic AT-2 cells. Vesicular uptake of HRP occurred in a fast followed by a slow phase; these appeared to correspond to cytoplasmic and perinuclear pools, respectively. Importantly, the overall quantitative difference in the uptake disappeared in the presence of 1 microM tetrodotoxin which significantly reduced the uptake of HRP into the MAT-LyLu cells. There was no effect on the AT-2 cells, consistent with functional VGSC expression occurring selectively in the former. A similar effect was observed in Na(+)-free medium. The uptake was partially dependent upon extracellular Ca(2+) but was not affected by raising the extracellular K(+) concentration. We suggest that functional VGSC expression could potentiate prostate cancer cells' metastatic ability by enhancing their secretory membrane activity.  相似文献   

11.
Cell Reactions Following Acute Brain Injury: A Review   总被引:5,自引:0,他引:5  
The proliferative behavior of glia following a cerebral stab wound in adult rats is reviewed. Proliferation was determined by both PCNA and [3H]thymidine labeling. Microglia were the first cells to divide and constituted the bulk of dividing cells. Both ramified and ameboid microglia divided. A smaller number of astrocytes entered the cell cycle a day later and were shown to derive from differentiated reactive cells. No differentiated oligodendroglia were labeled by thymidine, although a small number of dividing immature oligodendroglia could be detected in cultures of cells labeled in vivo. Recent studies of the properties of oligodendroglial precursors in brain repair mechanisms are discussed. The results so far support our conclusion that differentiated oligodendrocytes do not divide.  相似文献   

12.
Incubation of animal cells with hypertonic sucrose and polyethylene glycol (PEG) 1,000 renders endosomes sensitive in situ to hypotonic shock (Okada and Rechsteiner, 1982). We found that: 1) in vitro endosomes were osmotically insensitive; and 2) hypertonic sucrose inhibited transport from very early endosomes to lysosomes. Endocytic vesicles were labeled by incubating Chinese hamster ovary (CHO) cells for 1-10 min at 37 degrees C with horseradish peroxidase (HRP) and/or fluorescein isothiocyanate-conjugated dextran (FITC-dextran). Cell fractions prepared in 0.25 M sucrose were hypotonically shocked by dilution with 5 mM Na phosphate buffer, pH 6.7, to a final sucrose concentration of 0.05 M. After hypotonic shock, endocytized HRP and FITC-dextran pelleted with membrane while lysosomal hydrolases did not. The HRP activity in the pellet was latent, suggesting that endosomes were resistant to osmotic shock. Uptake in the presence of hypertonic sucrose had little effect on the subsequent osmotic sensitivity of the endosomes. Uptake in the presence of hypertonic sucrose and PEG 1,000 rendered endosomes fragile to cell homogenization. Unexpectedly, the inclusion of hypertonic sucrose in the uptake and chase media inhibited the appearance of HRP in lysosomes. HRP internalized during a 10-min uptake appeared as if it were present in two physically distinct compartments, one accessible to transport inhibition by exogenous sucrose ("very early" endosomes) and the other not ("early" endosomes). After a brief uptake (1-3 min), postincubation of CHO cells in 0.25 M sucrose-containing media completely blocked transport of internalized HRP to lysosomes. This blockage could be partially relieved by cointernalization of invertase with HRP. These results suggest that transport between multiple early endosome populations is sensitive to intraorganellar osmotic conditions.  相似文献   

13.
The effects of the Na+/H+ ionophore monensin and the weak base chloroquine on lysosomal uptake of endocytosed macromolecules were studied in cultured mouse peritoneal macrophages using horseradish peroxidase (HRP) and ferritin as exogenous tracers. The lysosomes were first loaded with HRP using a pulse-chase protocol. The cells were then exposed to ferritin for 30 to 120 min, either in control medium or in medium containing 3 microM monensin or 50 microM chloroquine. Semiquantitative electron microscopic analyses indicated that the uptake of ferritin into HRP-labeled lysosomes was inhibited in the drug-treated cells, and that the tracer particles accumulated in endosomes. At the same time the volume density of the endosomes was increased, fourfold by monensin and threefold by chloroquine; with the latter drug there was also an increase in lysosome volume density. Further, both drugs decreased the rate of endocytosis as measured biochemically, but not in proportion to the reduction of lysosomal ferritin uptake. After withdrawal of the drugs, cell morphology returned to normal and transfer of ferritin from endosomes to HRP-labeled lysosomes was resumed. The recovery was more rapid and complete in monensin-treated than in chloroquine-treated cells. On the basis of these findings and earlier investigations demonstrating that monensin and chloroquine both raise the pH in acid cell compartments, it is suggested that the transfer of soluble and not only membrane-bound macromolecules from endosomes to lysosomes is modulated by the pH in these organelles.  相似文献   

14.
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.  相似文献   

15.
Peptides that stimulate astroglial proliferation are produced in traumatized adult rat brain by 10 d after injury. These same peptides are released by ameboid microglia activated in vitro. Our findings suggest that astroglial scarring is regulated in part by the release of factors from ameboid microglia near the site of brain injury.  相似文献   

16.
In vitro studies show that microglia, the resident immune cells of the brain, express neurotransmitter and neuropeptide receptors which are linked to Ca(2+) signaling. Here we describe an approach to obtain Ca(2+) recordings from microglia in situ. We injected a retrovirus encoding a calcium sensor into the cortex of mice 2 days after stimulation of microglial proliferation by a stab wound injury. Microglial cells were identified with tomato lectin in acute slices prepared 3, 6, 21 and 42 days after the injury. The membrane current profile and the ameboid morphology indicated that microglial cells were activated at day 6 while at day 42 they resembled resting microglia. We recorded transient Ca(2+) responses to application of ATP, endothelin-1, substance P, histamine and serotonin. The fluorescence amplitude of ATP was increased only at day 6 compared to other time points, while responses to all other ligands did not vary. Only half of the microglial cells that responded to ATP also responded to endothelin-1, serotonin and histamine. Substance P, in contrast, showed a complete overlap with the ATP responding microglial population at day 6, at day 42 this population was reduced to 55%. Cultured cells were less responsive to these ligands. This study shows that in situ microglia consist of heterogeneous populations with respect to their sensitivity to neuropeptides and -transmitters.  相似文献   

17.
Reversible pinocytosis of horseradish peroxidase in lymphoid cells   总被引:3,自引:0,他引:3  
A detailed study of fluid phase endocytosis of horseradish peroxidase (HRP) in rat lymph node cells (LNC) is presented in this paper. Preliminary experiments have shown that HRP was internalized by non-receptor-mediated endocytosis and interacted minimally or not at all with plasma membrane of LNC, and can then be considered as a true fluid phase marker for these cells. Kinetics of uptake of HRP was found not to be linear with incubation time at 37 degrees C and deviation from linearity can be attributed to constant exocytosis of HRP. The kinetics of exocytosis cannot be described by a single exponential process. Rather, a minimum of two exponentials is required to account for exocytosis. This suggests that at least two intracellular compartments are involved in this process. The first turns over very rapidly with a t 1/2 release of about 3 min and is saturated after 10 min of exposure with HRP. The second, which turns over very slowly, is characterized by a t 1/2 release of about 500 min and accounts for the intracellular accumulation of HRP. Similar biphasic kinetics of exocytosis were observed with unfractionated LNC, with T lymphocyte-enriched LNC and with lymphocytes purified according to their density. This suggests that most, if not all, LNC are able to release HRP and that each cell type is endowed with the two intracellular compartments. Kinetics of uptake of HRP in these two compartments indicated that they are probably filled by two endocytic pathways, at least partially independent. Taken together, these results seem to indicate that a rapid membrane recycling occurs in lymphocytes. Furthermore, the weak base ammonium chloride and the carboxylic ionophore monensin were shown in our study to inhibit fluid phase endocytosis of HRP. The inhibition was time-dependent and required a preincubation of the cells with the drugs to be observed. Our results suggest that a perturbation of the vesicular traffic or a sequestration of membranes involved in HRP uptake is induced by these drugs. Under these conditions the release of cell-associated HRP was also reduced and to the same extent as the inhibition of uptake. Distribution of HRP between the two compartments and the t 1/2 release of HRP from either compartment were not perturbed. Taken together these results seem to indicate that exocytosis is not specifically affected by these drugs. Inhibition of uptake in drug-treated cells could result from a general decrease of membrane recycling or to the formation of smaller pinocytic vesicles with a different surface to volume ratio.  相似文献   

18.
Schiefer  J.  Kampe  K.  Dodt  H.U.  Zieglgänsberger  W.  Kreutzberg  G.W. 《Brain Cell Biology》1999,28(6):439-453
Microglial motility was studied in living mammalian brain tissue using infrared gradient contrast microscopy in combination with video contrast enhancement and time lapse video recording. The infrared gradient contrast allows the visualization of living cells up to a depth of 60 μm in brain slices, in regions where cell bodies remain largely uninjured by the tissue preparation and are visible in their natural environment. In contrast to other techniques, including confocal microscopy, this procedure does not require any staining or labeling of cell membranes and thus guarantees the investigation of tissue which has not been altered, apart from during preparation. Microglial cells are activated and increase in number in the facial nucleus following peripheral axotomy. Thus we established the preparation of longitudinal rat brainstem slices containing the axotomized facial nucleus as a source of activated microglial cells. During prolonged video time lapse recordings, two different types of microglial cell motility could be observed. Microglial cells which had accumulated at the surface of the slice remained stationary but showed activity of the cell soma, developing pseudopods of different shape and size which undulated and which were used for phagocytosis of cell debris. Microglial phagocytosis of bacteria could be documented for the first time in situ. In contrast, ameboid microglia which did not display pseudopods but showed migratory capacity, could be observed exclusively in the depth of the tissue. Some of these cells maintained a close contact to neurons and appeared to move along their dendrites, a finding that may be relevant to the role of microglia in “synaptic stripping”, the displacement of synapses following axotomy. This approach provides a valuable opportunity to investigate the interactions between activated microglial cells and the surrounding cellular and extracellular structures in the absence of staining or labeling, thus opening a wide field for the analysis of the cellular mechanisms involved in numerous pathologies of the CNS.  相似文献   

19.
We studied the pathway of serum protein transport into the lumen of the mouse oviduct by localizing several tracer proteins in the oviduct after intravenous injection on days 1, 5, and 11 of pregnancy. Fluorescent proteins were observed in the lamina propria and in vesicles in the lumenal epithelial cells mainly in the preampulla segment on days 5 and 11 of pregnancy. In the isthmus, there was much less fluorescence in the lamina propria and no fluorescent vesicles in lumenal epithelial cells. This is similar to previous observations on day 1 and indicates that the uptake of serum proteins into lumenal epithelial cells in the preampulla is not limited to the time when embryos are present in the oviductal lumen. Horseradish peroxidase (HRP) was present in the lamina propria of the preampulla on days 1 and 5, but direct tracer movement into the oviductal lumen was blocked by the epithelial junctional complexes. Within the epithelial cells, HRP was localized in endocytic vesicles along the basolateral membrane, multivesicular bodies (mvb), elongated dense bodies below the nucleus (bdb), and many small vesicles near the apical surface of the cells. Ferritin was also used as a tracer and was observed in the same locations as HRP. Acid phosphatase in the epithelial cells of the preampulla on day 1 was localized in mvb and bdb, indicating that these structures are lysosomes. It appeared that HRP and ferritin followed two pathways after basolateral endocytosis by the epithelial cells in the preampulla: 1) they were transported to apical vesicles that may release their contents into the oviductal lumen, or 2) they were transported to lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Microglia, implicating in such neuro-pathologies as brain inflammation, neurodegeneration, glioma, and neurogenesis, play an important role in central nervous system. Advanced research on microglia is crucial in exploring the neuro-pathology and neuro-physiology of these diseases, so how to culture large numbers of microglia in vitro becomes the base of a research. The wildly used method, at present, obtaining microglia from murine cannot fulfill the requirement of research, costing too much time and needing too many rats. We intend to introduce an optimized method that can harvest large quantities of microglia with high purity. Neonatal 2–3 days old Wistar rats were sacrificed and the cerebral cortices were trypsinized. We primarily cultured mixed cortical cells for 8–10 days. The microglia were harvested from the liquid supernatant; the left cells in the mixed cortical glial culture were passaged at a 1:2 density. After another 8–10 days of culture, microglia were collected again. And then, we passaged the left cells again for acquiring microglia from the third collection. We did not add additional mitogens in the experiment. At last, on average, 7.0 × 106 microglia were collected from one neonatal rat. By this modified method, much more microglia can be effectively and easily harvested comparing with the usual protocol before. We compared the characteristics of microglia harvested from these three passages, such as morphology, phenotype, purity, and abilities on proliferation, secretion, and phagocytosis. The cells presented typical microglia morphology, having phenotype markers of CD11b/c and CD45. The microglia from these three passages retained similar phagocytosis and secretion functions. Expanded population of microglia for investigation can be provided by this easy method in a short time with little cost and few rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号