共查询到18条相似文献,搜索用时 62 毫秒
1.
鼠脑驱动蛋白(rat brain kinesin)是一种利用水解ATP所释放的能量在微管束上高速并且连续性运动的常规驱动蛋白. 它在神经突触的物质运输中起着重要作用. 研究驱动蛋白是如何将ATP中储藏的化学能转化为机械动能是理解其运动机能的重要课题. 本课题获得了鼠脑驱动蛋白单体与ATP结构类似物AMPPCP形成的复合物晶体结构. 将这个晶体结构与鼠脑驱动蛋白单体-另一种ATP结构类似物AMPPNP形成的复合物晶体结构以及鼠脑驱动蛋白单体-ATP水解产物ADP形成的复合物晶体结构进行相互比较,揭示了活性中心的开关区域I中丝氨酸203可能作为质子的供体,加速了ATP中gamma-磷酸和beta-磷酸的断裂,从而导致ATP的水解. 相似文献
2.
驱动蛋白是一类利用水解ATP为ADP和磷酸的过程中释放的能量沿微管系统运动的蛋白。为了研究ATP中储存的化学能是如何转化为驱动蛋白的机械动能,鼠脑驱动蛋白的相关N-端区域在BL21-Codon Plus(DE3)-RP感受态大肠杆菌细胞中大量地表达。通过SP-强阳离子交换色谱和分子筛色谱的两步骤纯化,蛋白最终产量高达10 mg/L细胞培养液,蛋白纯度可以达到95%以上。纯化的蛋白具有水解ATP酶的活力,并与驱动蛋白抗体有特异性的反应。驱动蛋白可以在如下条件结晶:1.7 mol/L(NH4)2SO4,500 mmol/L NaCl,20%glycerol。晶体衍射的分辨率可以达到2.0。 相似文献
4.
铁蛋白在结合MgATP时,MgATP基本上不水解,只有在与钼铁蛋白结合并传递电子给钼铁蛋白时,MgATP才酶促水解为MgADP和Pi(磷酸根),电子传递和ATP的水解是两个快速的偶联过程。[Fe_4S_4(SPh)_4]~(-2) 相似文献
5.
驱动蛋白是一种分子马达,同时也是一种核苷酸酶,它能够将ATP分子所携带的化学能转化为其沿微管蛋白行走的机械能,每消耗一个ATP分子行走一步。对于驱动蛋白如何将ATP的化学能转化为构象变化的机械能的研究一直是生物物理学研究的热点问题。本文从3个方面对此问题的研究进展进行了综述:ATP分子与驱动蛋白结合; ATP结合引起驱动蛋白头部产生转动;驱动蛋白头部转动引起驱动蛋白颈链向头部的对接。将这三个方面的内容合并起来就构成了驱动蛋白的能量传递路径。 相似文献
6.
驱动蛋白是一类蛋白质超家族的总称,其中驱动蛋白-1(以下简称驱动蛋白)是目前已知的有机体内最小的马达蛋白.驱动蛋白能够催化三磷酸腺苷(adenosine triphosphate,ATP)分子的水解反应,将贮藏在ATP中的化学能转变为自身机械运动所需的机械能.驱动蛋白能够沿着微管连续定向运动,在细胞的有丝分裂和胞内物质运输中发挥重要作用.在真核细胞中,驱动蛋白主要以二聚体的形式存在,其结构主要包括4个部分,即马达头部、茎部、连接头部与茎部的颈链以及与货物相结合的尾部.驱动蛋白二聚体独特的结构特征以及各个组成部分协调的构象变化,保证了其沿微管的连续行走.目前,驱动蛋白的结构与功能之间的关系的研究取得了重要的进展.随着实验和计算水平的不断提高,彻底了解驱动蛋白的运动机理已经为期不远了. 相似文献
7.
采用微波水解的方法制备鱼蛋白水解液,结果表明:微波可以明显增加蛋白质回收率,正交实验得到微波酸解的最适条件,即HCl浓度4 mol·L-1、微波功率450w、作用时间为30min,其水解液的蛋白质回收率可达到91.02%,相当于酶解的效果,且腥苦昧较小。 相似文献
9.
驱动蛋白是一类能够利用ATP水解释放的化学能驱动其所携带的“货物”分子沿着微管(microtubule,MT)定向运动的分子马达,在细胞器运输、有丝分裂、轴突运输等方面有着重要的生理作用。随着驱动蛋白结合ADP、ATP和未结合核苷酸(APO)三种特征状态的晶体结构的解析,驱动蛋白构象变化的研究得到了进一步发展,而在力产生机制和运动模型方面仍然存在较大争议。本文以kinesin-1家族为例,分析了驱动蛋白三种特征状态结构的特点、状态结构间的构象转变,论述了驱动蛋白的力产生机制和整个迈步过程。并探讨了驱动蛋白的运动模型,同时采用分子动力学模拟比较了驱动蛋白的两种迈步方式,为深入研究驱动蛋白提供了一定的理论计算。最后,基于本课题组对复杂体系的研究,对驱动蛋白体系的控制机制提出了新的假设,并对未来的研究方向进行了展望。 相似文献
10.
以扇贝边为原料,首先分析了其营养成分,结果表明,扇贝边干物质中蛋白质的含量为67.6%。然后用ASI,398枯草杆菌中性蛋白酶通过液体发酵对扇贝边蛋白资源进行了酶解条件优化,实验了酶解温度、酶的用量、酶水解时间和底物浓度等4因素对酶解效率的影响,确定了扇贝边的最佳水解条件:即酶解温度为50℃,蛋白酶的加入量为0.5%,即250U·ml -1,底物浓度为6%,酶解时间为3h。 相似文献
11.
Kinesin and related motor proteins utilize ATP fuel to propel themselves along the external surface of microtubules in a processive
and directional fashion. We show that the observed step-like motion is possible through time-varying charge distributions
furnished by the ATP hydrolysis cycle while the static charge configuration on the microtubule provides the guide for motion.
Thus, while the chemical hydrolysis energy induces appropriate local conformational changes, the motor translational energy
is fundamentally electrostatic. Numerical simulations of the mechanical equations of motion show that processivity and directionality
are direct consequences of the ATP-dependent electrostatic interaction between the different charge distributions of kinesin
and the microtubule. 相似文献
12.
With their ability to depolymerize microtubules (MTs), KinI kinesins are the rogue members of the kinesin family. Here we present the 1.6 A crystal structure of a KinI motor core from Plasmodium falciparum, which is sufficient for depolymerization in vitro. Unlike all published kinesin structures to date, nucleotide is not present, and there are noticeable differences in loop regions L6 and L10 (the plus-end tip), L2 and L8 and in switch II (L11 and helix4); otherwise, the pKinI structure is very similar to previous kinesin structures. KinI-conserved amino acids were mutated to alanine, and studied for their effects on depolymerization and ATP hydrolysis. Notably, mutation of three residues in L2 appears to primarily affect depolymerization, rather than general MT binding or ATP hydrolysis. The results of this study confirm the suspected importance of loop 2 for KinI function, and provide evidence that KinI is specialized to hydrolyze ATP after initiating depolymerization. 相似文献
13.
The human kinetochore is a highly complex macromolecular structure that connects chromosomes to spindle microtubules (MTs) in order to facilitate accurate chromosome segregation. Centromere-associated protein E (CENP-E), a member of the kinesin superfamily, is an essential component of the kinetochore, since it is required to stabilize the attachment of chromosomes to spindle MTs, to develop tension across aligned chromosomes, to stabilize spindle poles and to satisfy the mitotic checkpoint. Here we report the 2.5A resolution crystal structure of the motor domain and linker region of human CENP-E with MgADP bound in the active site. This structure displays subtle but important differences compared to the structures of human Eg5 and conventional kinesin. Our structure reveals that the CENP-E linker region is in a "docked" position identical to that in the human plus-end directed conventional kinesin. CENP-E has many advantages as a potential anti-mitotic drug target and this crystal structure of human CENP-E will provide a starting point for high throughput virtual screening of potential inhibitors. 相似文献
14.
1. Actin and heavy meromyosin, initially mixed in a Mg-ATP solution, began to form the rigor complex slowly after ATP in the solution had been completely hydrolyzed. 2. This was because the heavy meromyosin-product complex formed via ATP hydrolysis was almost completely dissociated from actin even in the absence of ATP and as soon as this heavy meromyosin-product complex was decomposed, the heavy meromyosin combined with actin forming the rigor complex. 3. Linear plots were obtained when the reciprocal of the excess rate of the actin-accelerated rigor complex formation was plotted against the reciprocal of the added actin concentration as similar with those made on the steady acto-heavy meromyosin ATPase. 4. The V of the rigor complex formation process was about 1/5 of that of the steady acto-heavy meromyosin ATPase activity, showing that the actomyosin ATPase activity could not be explained merely by the actin-accelerated decomposition of the heavy meromyosin-product complex. 5. The same analyses were carried out on myosin subfragment 1. 6. Our results could be explained by considering the two non-identical active sites of myosin, and we propose the following scheme for the actomyosin ATPase. 7. Actin accelerates the rate-limiting bond hydrolysis in the ATPase occurring at one active site of myosin, as well as the rate-limiting decomposition of the heavy meromyosin-product complex formed at another site. 相似文献
15.
Kinesins are a diverse group of adenosine triphosphate (ATP)‐dependent motor proteins that transport cargos along microtubules (MTs) and change the organization of MT networks. Shared among all kinesins is a ~40 kDa motor domain that has evolved an impressive assortment of motility and MT remodeling mechanisms as a result of subtle tweaks and edits within its sequence. Several elegant studies of different kinesin isoforms have exposed the purpose of structural changes in the motor domain as it engages and leaves the MT. However, few studies have compared the sequences and MT contacts of these kinesins systematically. Along with clever strategies to trap kinesin–tubulin complexes for X‐ray crystallography, new advancements in cryo‐electron microscopy have produced a burst of high‐resolution structures that show kinesin–MT interfaces more precisely than ever. This review considers the MT interactions of kinesin subfamilies that exhibit significant differences in speed, processivity, and MT remodeling activity. We show how their sequence variations relate to their tubulin footprint and, in turn, how this explains the molecular activities of previously characterized mutants. As more high‐resolution structures become available, this type of assessment will quicken the pace toward establishing each kinesin's design–function relationship. 相似文献
16.
Human multidrug resistance protein 1 (MRP1) is a membrane protein that belongs to the ATP-binding cassette (ABC) superfamily of transport proteins. MRP1 contributes to chemotherapy failure by exporting a wide range of anti-cancer drugs when over expressed in the plasma membrane of cells. Here, we report the first high-resolution crystal structure of human MRP1-NBD1. Drug efflux requires energy resulting from hydrolysis of ATP by nucleotide binding domains (NBDs). Contrary to the prokaryotic NBDs, the extremely low intrinsic ATPase activity of isolated MRP1-NBDs allowed us to obtain the structure of wild-type NBD1 in complex with Mg2+/ATP. The structure shows that MRP1-NBD1 adopts a canonical fold, but reveals an unexpected non-productive conformation of the catalytic site, providing an explanation for the low intrinsic ATPase activity of NBD1 and new hypotheses on the cooperativity of ATPase activity between NBD1 and NBD2 upon heterodimer formation. 相似文献
17.
Dephosphocoenzyme A kinase (DCK) catalyzes phosphorylation in the final step of coenzyme A (CoA) biosynthesis. In this phosphorylation process, domain movements play a very important role. To reveal the structural changes induced by ligand binding, we determined the crystal structure of DCK from Thermus thermophilus HB8 by the multiwavelength anomalous dispersion method at 2.8 A. The crystal structure includes three independent protein molecules in the asymmetric unit: One is a liganded form and the others are unliganded. The topology shows a canonical nucleotide-binding protein possessing the P-loop motif. A structure homology search by DALI revealed the similarity of the DCKs from T. thermophilus HB8, Haemophilus influenzae, and Escherichia coli. Structural comparisons between the liganded and unliganded forms of DCK from T. thermophilus HB8 indicated domain movements induced by adenosine triphosphate (ATP) binding. For the domain movements, proline residues confer flexibility at the domain linkages. In particular, Pro91 plays an important role in moving the CoA domain. 相似文献
18.
The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding. 相似文献
|