首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B S Leach  J F Collawn  W W Fish 《Biochemistry》1980,19(25):5741-5747
The effects of oligosaccharide branch chains on the hydrodynamic behavior of reduced glycopolypeptides was examined by gel chromatography in random coil producing solvents. This entailed a comparison of the gel chromatographic behavior in the presence of concentrated guanidinium chloride of 16 glycopolypeptides of known physical and chemical properties to that of regular polypeptides. For most of the glycopolypeptides employed, the presence of oligosaccharide branches sufficiently perturbed the dimensions of the unfolded glycopolypeptide such that its effective hydrodynamic radius was the same as that of a linear polypeptide of the same total mass. For this reason, gel chromatography in random coil producing solvents appears to be the most reliable empirical method to obtain a first approximation of the molecular weight of a glycopolypeptide. Glycopolypeptides rich in N-acetylneuraminic acid, and thus possessing low isoionic points, exhibited more pronounced deviations in their electrophoretic behavior in the presence of 8 M urea than those glycopolypeptides whose ionic properties were similar to those of the polypeptide standards employed.  相似文献   

2.
Human erythropoietin can be denatured with 6M urea or with 6M urea/1% sodium dodecyl sulfate and renatured with restoration of biologic activity. Activity cannot be restored if the denatured hormone is exposed to 10mM 2-mercaptoethanol strongly suggesting the existence of one or more “buried” disulfide bonds critical for biologic activity. Polyacrylamide gel electrophoresis under denaturing conditions resulted in an apparent molecular weight of 25,000, significantly lower then recent estimates.  相似文献   

3.
Wheat coleoptiles have two distinct invertases, a soluble and a cell wall-bound form as indicated by results from cytochemical and biochemical studies. These enzyme activities differ in their pH optima, chromatographic behavior on diethylaminoethyl cellulose, kinetic properties, thermal stability, and response to light treatment. The soluble invertase was purified to near homogeneity by diethylaminoethyl-cellulose, concanavalin-A Sepharose, and Sephacryl S-300 chromatography. The overall purification was 175-fold with a recovery of about 26%. The holoenzyme has an apparent molecular weight of 158,000 and subunit molecular weight of 53,000 as estimated by polyacrylamide gel electrophoresis under denaturing conditions. Illumination of wheat seedlings caused an increase in the cell wall, but not the soluble, invertase activity.  相似文献   

4.
Structure and proteolysis of the growth hormone receptor on rat hepatocytes   总被引:3,自引:0,他引:3  
K Yamada  K E Lipson  D B Donner 《Biochemistry》1987,26(14):4438-4443
125I-Labeled human growth hormone is isolated in high molecular weight (Mr) (300,000, 220,000, and 130,000) and low molecular weight complexes on rat hepatocytes after affinity labeling. The time-dependent formation of low molecular weight complexes occurred at the expense of the higher molecular weight species and was inhibited by low temperature or inhibitors of serine proteinases. Exposure to reducing conditions induced loss of Mr 300,000 and 220,000 species and augmented the amount of Mr 130,000 complexes. The molecular weight of growth hormone (22,000) suggests that binding had occurred with species of Mr 280,000, 200,000, and 100,000. Two-dimensional gel electrophoresis demonstrated that the 100,000-dalton receptor subunit is contained in both the 280,000- and 200,000-dalton species. Reduction of interchain disulfide bonds in the growth hormone receptor did not alter its elution from gel filtration columns, but intact, high molecular weight receptor constituents were separated from lower molecular weight degradation products. Digestion of affinity-labeled growth hormone-receptor complexes with neuraminidase increased the mobility of receptor constituents on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These observations show that the growth hormone receptor is degraded by hepatic serine proteinases to low molecular weight degradation products which can be separated from intact receptor by gel filtration. Intact hormone-receptor complexes are aggregates of 100,000-dalton sialoglycoprotein subunits held together by interchain disulfide bonds and by noncovalent forces.  相似文献   

5.
The major form of phospholipase A2 from cobra venom (Naja naja naja) was prepared in 30% yield and was homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate and on Sephadex G-100 chromatography. The monomer molecular weight is about 11,000 according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Ultracentrifugation and molecular sieve techniques were employed to confirm the molecular weight and to demonstrate a concentration-dependent aggregation of the enzyme. It was found that at concentrations below about 0.05 mg ml(-1), the enzyme exists predominantly in the monomeric form; kinetic studies are usually conducted in much more dilute solutions (0.2 mug ml(-1)). The amino acid composition of the enzyme is reported. Of special interest is the presence of five to six disulfide bonds, 1 tryptophan residue, and 1 histidine residue. It is stable at high temperatures and is unusually resistant to denaturing agents. The isoelectric point was found to be 4.95. The findings that the protein is unusually resistant to denaturing agents and that it undergoes a concentration-dependent aggregation help to explain some of the previous reports in the literature on the apparent multiple forms of the cobra enzyme and their separation.  相似文献   

6.
The apolipoprotein B polypeptide of human serum low density lipoprotein exists (after reduction of disulfide bonds) as a random coil with a molecular weight of 250,000 in concentrated solutions of guanidine hydrochloride. With intact disulfide bonds, there is a limited restraint on the polypeptide conformation in this denaturing solvent. In the presence of saturating amounts of bound sodium dodecyl sulfate, the apolipoprotein is dimeric and highly asymmetric. This work substantiates the monomeric molecular weight of 250,000 for apolipoprotein B reported by others (Smith, R., Dawson, J.R., and Tanford, C. (1972) J. Biol. Chem. 247, 3376-3381) and demonstrates that the dimeric state of the polypeptide extant in vivo is maintained in micellar detergent solution.  相似文献   

7.
Characterization of a cadmium-binding complex of cabbage leaves   总被引:6,自引:2,他引:4       下载免费PDF全文
Wagner GJ 《Plant physiology》1984,76(3):797-805
The chemical nature of a principal, inducible cadmium-binding complex which accumulates in cabbage leaves (Wagner and Trotter 1982 Plant Physiol 69: 804-809) was studied and compared with that of animal metallothionein and copper-binding proteins isolated from various organisms. The apparent molecular weight of native cabbage complex and carboxymethylated ligand of the complex under native conditions as determined by gel filtration was about 10,000 daltons. Under denaturing conditions their apparent molecular weights were about 2000 daltons. Ligand of native complex contained 37, 28, and 9 residue per cent of glutamic acid-glutamine, cysteine, and glycine, respectively, and low aromatic residue, serine and lysine content. The high acidic and low hydrophobic residue content explain the behavior of complex on electrophoresis in the presence and absence of sodium dodecyl sulfate. Its isoelectric point was below 4.0 and it bound 4 to 6 moles cadmium per mole ligand in what appear to be cadmium-mercaptide chromophores. The complex was found to be heat stable, relatively protease insensitive, and lacking in disulfide bonds. Attempts to determine the primary sequence of reduced native complex and carboxymethylated, cleaved ligand using the Edman degradation procedure were unsuccessful. An electrophoretic procedure is described for preparative isolation of purified complex and a method is described for monitoring ligand of complex as its fluorescent dibromobimane adduct.  相似文献   

8.
Purification to homogeneity of the N-acetylmuramoyl-L-alanine amidase (mucopeptide amidohydrolase, EC 3.5.1.28) from human serum has been achieved with a high yield. By molecular sieving chromatography, a molecular weight of 120,000-130,000 has been found for the native enzyme. Polyacrylamide gel electrophoresis under native conditions gave a unique band of Mr = 125,000. The same technique performed under denaturing conditions revealed that the protein is a dimer composed of one subunit of Mr = 57,000 and another of Mr = 70,000. In isoelectrofocalization assays, the amidase behaved as an acidic protein. Ethylenediaminetetraacetate inhibited the enzyme activity; the Mg2+ requirement was confirmed. The simultaneous presence of sulfhydryl groups and disulfide bonds in the protein was evidenced by the inhibitions produced by different thiol-blocking reagents and by several thiol-bearing substances. Direct measurements established the presence of two accessible thiol groups and the occurrence of nine disulfide bonds per protein molecule. Studies of substrate hydrolyzing capacities showed a marked preference for the muramoyl tripeptide derived from the Escherichia coli or Bacillus cereus mureins, the disaccharide tetrapeptide and the bis disaccharide tetra-tetrapeptide from E. coli were also good substrates. Activities on small muropeptides of other composition are also reported. Whole (insoluble) peptidoglycans representing the main bacterial chemotypes were submitted to the enzyme action; although with weak specific activities, the human amidase was nevertheless able to release soluble peptides from some of them. A bacteriolytic capacity on some microorganisms cannot be excluded. Results are discussed and the human enzyme is compared to presently known microbial muramoyl amidases.  相似文献   

9.
1. Preparations of purified pig kidney aminoacylase (N-Acylamino-acid amidohydrolase, EC 3.5.1.14) were obtained by Sephadex and DEAE-cellulose chromatography in homogeneous form as judged by polyacrylamide gel electrophoresis and immunoelectrophoresis. 2. The apparent molecular weight of the enzyme, determined by gel filtration, was about 86 000. After treatment with mercaptoethanol, performic acid or sodium dodecyl sulphate a band with an apparent molecular weight of approximately 43 000 was observed in polyacrylamide gels containing sodium dodecyl sulphate. Thus pig kidney aminoacylase seems to be composed of two subunits. 3. The amino acid composition of the enzyme was determined. Aminoacylase contains 772 amino acids, which corresponds to a molecular weight of 85 500. 12 tryptophan and 12 half-cystine residues were found. 4. Each subunit of the enzyme contains two -SH groups of different reactivity and two disulfide bonds one of which is easily cleaved by -SH compounds, the second only by performic acid oxidation. 5. Chemical modification of two -SH groups abolishes the catalytic activity of aminoacylase. Cleavage of two disulfide bonds also inactivates the enzyme. It is suggested that the enzyme has two active sites each containing an essential -SH group and disulfide bond. One active site is assumed to be part of each subunit.  相似文献   

10.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Previous 77Se NMR relaxation time studies established the utility of 77Se NMR spectroscopy in studying low molecular weight (less than 500) selenium-containing molecules. Since the spin rotation and chemical shift anisotrophy mechanisms contributed significantly to the 77Se spin-lattice relaxation in these compounds, it was questionable as to whether the latter mechanism would be efficient enough to enable 77Se resonances to be observed in a reasonable period in high molecular weight selenobiomolecules. Thus, to address this problem, disulfide bonds of ribonuclease-A and lysozyme were reductively cleaved under denaturing conditions, and the resulting 7-8 sulfhydryl groups were treated with a new sulfhydryl group reagent containing selenium, 6,6'-diselenobis(3-nitrobenzoic acid), to give proteins containing covalently attached selenium in the form of selenenyl sulfides. The observation of high resolution 77Se NMR spectra of these proteins under denaturing conditions was accomplished. Five to six 77Se NMR resonances, which fell in a chemical shift range of 14-15 ppm, were observed for each protein and are compared to the chemical shifts of several model selenenyl sulfides derived from cysteine.  相似文献   

12.
L Fryklund  D Eaker 《Biochemistry》1975,14(13):2865-2871
The complete covalent structure of a small, basic protein with cardiotoxic activity is described. This has been isolated from the venom of Naja nigricollis by gel filtration on Sephadex G-75 and gradient ion exchange chromatography on Bio-Rex 70. The cardiotoxin, molecular weight 6806 from amino acid composition, consists of 60 amino acids, cross-linked by four disulfide bridges, connecting 3-21, 14-38, 42-53, and 54-59. The protein contains one residue of tryptophan, phenylalanine, and glutamic acid, two residues of arginine and tyrosine, four residues of methionine, and nine residues of lysine. Histidine is absent. The chymotryptic peptides of the oxidized and S-carboxymethylated protein were isolated by gel filtration on Sephadex G-25 and zone electrophoresis on a cellulose column. The sequence was determined by Edman degradation, using the (manual) direct phenylthiohydantoin method and with the use of carboxypeptidase A. Disulfide pairing was determined on thermolysin cleaved peptides from the native protein. The sequence is shown to be homologous to other cardiotoxins and a lytic factor from snake venoms and also shows homology, both in sequence and disulfide pairing to neurotoxins. A partial reduction experiment in the absence of denaturing agent using 14-C-labeled iodoacetic acid as S-carboxymethylating agent shows that disulfide bonds 14-38 and 42-53 were reduced fastest followed marginally by 54-59, and then bond 3-21.  相似文献   

13.
The structure of denatured alpha-lactalbumin (alpha-LA) has been characterized using the method of disulfide scrambling. Under denaturing conditions (urea, guanidine hydrochloride, guanidine thiocyanate, organic solvent or elevated temperature) and in the presence of thiol initiator, alpha-LA denatures by shuffling its four native disulfide bonds and converts to a mixture of fully oxidized scrambled structures. Analysis by reversed-phase HPLC reveals that the denatured alpha-LA comprises a minimum of 45 fractions of scrambled isomers. Among them, six well populated isomers have been isolated and structurally characterized. Their relative concentrations, which represent the fingerprinting of the denatured alpha-LA, vary substantially under different denaturing conditions. These results permit independent plotting of the denaturation and unfolding curves of alpha-LA. Most importantly, unique isomers of partially unfolded alpha-LA were shown to populate at mild and selected denaturing conditions. Organic solvent disrupts preferentially the hydrophobic alpha-helical domain, generating a predominant isomer containing two native disulfide bonds at the beta-sheet domain and two scrambled disulfide bonds at the alpha-helical region. Thermal denaturation selectively unfolds the beta-sheet domain of alpha-LA, producing a prevalent isomer that exhibits structural characteristics of the molten globule state of alpha-LA.  相似文献   

14.
In the several strains of Ureaplasma urealyticum that we examined, all originally isolated from human sources, the ureases were found to have a pH optimum between 7.2 and 7.5, and the Km was approximately 2.5 mM urea. Using nonreducing, nondenaturing conditions for polyacrylamide gel electrophoresis, the molecular weight of the holoenzyme was determined to be approximately 380 000. Treatment with reducing agents did not affect the electrophoretic mobility and, therefore, the molecular weight of ureaplasma urease. Immunoblot analysis (using antiserum to U. urealyticum urease) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing, denaturing conditions revealed two antigenically reactive bands of molecular weight 174 000 and 179 000. Under reducing, denaturing conditions, a single band of molecular weight approximately 179 000 was detected. Multiple forms of urease were detected by isoelectrofocusing but not by zonal electrophoresis.  相似文献   

15.
Tracheobronchial mucin samples from control and cystic fibrosis patients were purified by gel filtration chromatography on Sephacryl S-1000 and by density gradient centrifugation. Normal secretions contained high molecular weight (approximately 10(7] mucins, whereas the cystic fibrosis secretions contained relatively small amounts of high molecular weight mucin together with larger quantities of lower molecular weight mucin fragments. These probably represent products of protease digestion. Reducing the disulfide bonds in either the control or cystic fibrosis high molecular weight mucin fractions released subunits of approximately 2000 kDa. Treating these subunits with trypsin released glycopeptides of 300 kDa. Trypsin treatment of unreduced mucin also released fragments of 2000 kDa that could be converted into 300-kDa glycopeptides upon disulfide bond reduction. Thus, protease-susceptible linkages within these mucins must be cross-linked by disulfide bonds so that the full effects of proteolytic degradation of mucins remain cryptic until disulfide bonds are reduced. Since various combinations of protease treatment and disulfide bond reduction release either 2000- or 300-kDa fragments, these fragments must represent important elements of mucin structure. The high molecular weight fractions of cystic fibrosis mucins appear to be indistinguishable from control mucins. Their amino acid compositions are the same, and various combinations of disulfide bond reduction and protease treatment release products of identical size and amino acid composition. Sulfate and carbohydrate compositions did vary considerably from sample to sample, but the limited number of samples tested did not demonstrate a cystic fibrosis-specific pattern. Thus, tracheobronchial mucins from cystic fibrosis and control patients are very similar, and both share the same generalized structure previously determined for salivary, cervical, and intestinal mucins.  相似文献   

16.
Gliadins and glutenins are the major storage proteins that accumulate in wheat endosperm cells during seed development. Although gliadins are mainly monomeric, glutenins consist of very large disulfide-linked polymers made up of high molecular weight and low molecular weight subunits. These polymers are among the largest protein molecules known in nature and are the most important determinants of the viscoelastic properties of gluten. As a first step toward the elucidation of the folding and assembly pathways that lead to glutenin polymer formation, we have exploited an in vitro system composed of wheat germ extract and bean microsomes to examine the role of disulfide bonds in the structural maturation of a low molecular weight glutenin subunit. When conditions allowing the formation of disulfide bonds were established, the in vitro synthesized low molecular weight glutenin subunit was recovered in monomeric form containing intrachain disulfide bonds. Conversely, synthesis under conditions that did not favor the formation of disulfide bonds led to the production of large aggregates from which the polypeptides could not be rescued by the post-translational generation of a more oxidizing environment. These results indicate that disulfide bond formation is essential for the conformational maturation of the low molecular weight glutenin subunit and suggest that early folding steps may play an important role in this process, allowing the timely pairing of critical cysteine residues. To determine which cysteines were important to maintain the protein in monomeric form, we prepared a set of mutants containing selected cysteine to serine substitutions. Our results show that two conserved cysteine residues form a critical disulfide bond that is essential in preventing the exposure of adhesive domains and the consequent formation of aberrant aggregates.  相似文献   

17.
Insulin-like growth factor (IGF-1) contains three disulfide bonds. In the presence of denaturant and thiol catalyst, IGF-1 shuffles its native disulfide bonds and denatures to form a mixture of scrambled isomers. The composition of scrambled IGF varies under different denaturing conditions. Among the 14 possible scrambled IGF isomers, the yield of the beads-form isomer is shown to be directly proportional to the strength of the denaturing condition. This paper demonstrates a new approach to quantify the extent of unfolding of the denatured protein.  相似文献   

18.
Two major aminopeptidases, an aminopeptidase B and an aminopeptidase M-like enzyme, were purified from human skeletal muscle by DEAE-cellulose, HPLC gel filtration, and hydroxyapatite column chromatographies. The purified aminopeptidase B exhibits a molecular weight of 76,000 under both native and denaturing conditions. The activity of the aminopeptidase B is regulated by C1 ions and other anions in vitro. On the other hand, the aminopeptidase M-like enzyme is a monomeric protein having a molecular weight of 96,000. It is capable of significantly cleaving Phe-, Leu-, Arg-, and Ala-aminoacyl bonds in the presence of 2-mercaptoethanol. The pH optima for both enzymes are around 7.0, and bestatin is an effective inhibitor of both enzymes.  相似文献   

19.
Amino acid sequence of crayfish (Astacus fluviatilis) trypsin If   总被引:3,自引:0,他引:3  
The complete amino acid sequence of trypsin from the crayfish Astacus fluviatilis has been determined. The protein was fragmented with cyanogen bromide after S-carboxymethylation of the reduced disulfide bonds and by trypsin after S-carboxymethylation as well as after succinylation of lysine residues and aminoethylation of the reduced disulfide bonds. Peptides were purified by gel filtration and by reversed-phase high-performance liquid chromatography. Stepwise degradation was performed in a spinning cup sequencer. The enzyme contains 237 amino acid residues and has a molecular weight of 25 030. In contrast to bovine trypsin, it contains three rather than six disulfide bonds which are paired in the same fashion as those in trypsin from Streptomyces griseus. The constituents of the active site of bovine trypsin are present in corresponding positions in the crayfish enzyme. Crayfish trypsin shows 43.6% sequence identity with the bovine enzyme as compared to 40.0% identity with the S. griseus enzyme. The present analysis affords the first detailed view into the evolution of trypsins at the invertebrate level.  相似文献   

20.
Summary Purified preparations of clostripain exhibit two distinct components on analytical and preparative acrylamide gel electrophoresis as well as adsorption chromatography on hydroxylapatite. Both components are of identical molecular size and specific activity. By reducing the enzyme for an extended period of time prior to chromatography, the specific activity increases by a factor of four and the enzyme elutes from the hydroxylapatite column as a homogeneous peak. Enzyme labeled at the active site with3H-TLCK exhibits a similar chromatographic behavior to native enzyme on hydroxylapatite.It is inferred that such behavior may be attributed to a two phase disulfide reduction, one involving reduction of a disulfide thereby freeing an active site SH group and a second disulfide reduction resulting in the chromatographic transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号