首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
In eukaryotic cells, the key regulators of cell-cycle transitions are the cyclin-dependent kinases (CDKs). The best studied CDK is a component of the M-phase promoting factor (MPF), which promotes entry into and progression through meiosis and mitosis. One of the enduring mysteries of the MPF complex has been the role of Cks/Suc1, a highly conserved member of the cell-cycle machinery in eukaryotes [1,2]. Cks has been proposed to be involved in activation of MPF [3], general interactions of MPF with its mitotic substrates [4] and/or inactivation of MPF [5,6]. We identified two Cks homologs in the genome of Caenorhabditis elegans and used RNA-mediated interference (RNAi) to investigate their roles in development. Whereas cks-2(RNAi) embryos display no apparent defects, cks-1(RNAi) embryos display defects in both meiosis and mitosis. Specifically, cks-1(RNAi) embryos fail to exit M phase properly. We propose that CKS-1 has an essential role in the inactivation of MPF during early C. elegans embryogenesis.  相似文献   

3.
MOTIVATION: The complete genomes of a number of organisms have already been sequenced. However, the vast majority of annotated genes are derived by gene prediction methods. It is important to not only validate the predicted coding regions but also to identify genes that may have been missed by these programs. METHODS: We searched the entire C.elegans genomic sequence database maintained by the Sanger Center using human c-Src sequence in a TBLASN search. We have confirmed one of the predicted regions by isolation of a cDNA and carried out a phylogenetic analysis of Src kinase family members in the worm, fly and several vertebrate species. RESULTS: Our analysis identified a novel tyrosine kinase in the C.elegans genome that contains functional features typical of the Src family kinases that we have designated as Src-1. The open reading frame contains a conserved N-terminal myristoylation site and a tyrosine residue within the C-terminus that is crucial for regulating the activity of Src kinases. Our phylogenetic analysis of Src family members from C. elegans, Drosophila and other higher organisms revealed a relationship among Src kinases from C. elegans and Drosophila.  相似文献   

4.
Defects in the human XPV/POLH gene result in the variant form of the disease xeroderma pigmentosum (XP-V). The gene encodes DNA polymerase eta (Poleta), which catalyzes translesion synthesis (TLS) past UV-induced cyclobutane pyrimidine dimers (CPDs) and other lesions. To further understand the roles of Poleta in multicellular organisms, we analyzed phenotypes caused by suppression of Caenorhabditis elegans POLH (Ce-POLH) by RNA interference (RNAi). F1 and F2 progeny from worms treated by Ce-POLH-specific RNAi grew normally, but F1 eggs laid by worms treated by RNAi against Ce-POLD, which encodes Poldelta did not hatch. These results suggest that Poldelta but not Poleta is essential for C. elegans embryogenesis. Poleta-targeted embryos UV-irradiated after egg laying were only moderately sensitive. In contrast, Poleta-targeted embryos UV-irradiated prior to egg laying exhibited severe sensitivity, indicating that Poleta contributes significantly to damage tolerance in C. elegans in early embryogenesis but only modestly at later stages. As early embryogenesis is characterized by high levels of DNA replication, Poleta may confer UV resistance in C. elegans, perhaps by catalyzing TLS in early embryogenesis.  相似文献   

5.
Shim J  Lee J 《Molecules and cells》2005,19(3):452-457
The adaptor protein (AP) complexes are involved in membrane transport of many proteins. There are 3 AP complexes in C. elegans unlike mammals that have four. To study the biological functions of the AP-3 complexes of C. elegans, we sought homologues of the mouse and human genes that encode subunits of the AP-3 complexes by screening C. elegans genomic and EST sequences. We identified single copies of homologues of the m3, s3, b3 and d genes. The medium chain of AP-3 is encoded by a single gene in C. elegans but two different genes in mammals. Since there are no known mutations in these genes in C. elegans, we performed RNAi to assess their functions in development. RNAi of each of the genes caused embryonic and larval lethal phenotypes. APM-3 is expressed in most cells, particularly strongly in spermatheca and vulva. We conclude that the products of the C. elegans m3, s3, b3 and d genes are essential for embryogenesis and larval development.  相似文献   

6.
An important quest in modern biology is to identify genes involved in aging. Model organisms such as the nematode Caenorhabditis elegans are particularly useful in this regard. The C. elegans genome has been sequenced [1], and single gene mutations that extend adult life span have been identified [2]. Among these longevity-controlling loci are four apparently unrelated genes that belong to the clk family. In mammals, telomere length and structure can influence cellular, and possibly organismal, aging. Here, we show that clk-2 encodes a regulator of telomere length in C. elegans.  相似文献   

7.
RNAi, inhibition of gene expression by double stranded RNA molecules, has rapidly become a powerful laboratory technique to study gene function. The effectiveness of the procedure raised the question of whether this laboratory technique may actually mimic a natural cellular control mechanism that works on similar principles. Indeed recent evidence is accumulating to suggest that RNAi is a natural control mechanism that might even serve as a primitive immune response against RNA viruses and retroposons. Three different interference scenarios seem to be utilized by various RNAi mechanisms. One of the mechanisms involves degradation of mRNA molecules. Here we suggest a method to systematically scan entire genomes simultaneously for RNAi elements and the presence of cellular genes that are degraded by these RNAi elements via exact short base-pair matching. The method is based on scanning the genomes using a suffix tree data structure that was specifically modified to identify sets of combinations of repeated and inverted repeated sequences of 20 bp or more. Initial scan suggest that a large number, about 7% of C.elegans and 3% of C.briggsae genes, have the potential to be subject to natural RNAi control. Two methods are proposed to further analyze these genes to select the cases that are more likely to be actual cases of RNAi control. One method involves looking for ESTs that can provide direct evidence that RNAi control element are indeed expressed. The other method looks for synteny between C.elegans and C.briggsae assuming that genes that might be under RNAi control in both organisms are more likely to be biological significant. Taken together, supportive evidence was found for about 70 genes to be under RNAi control. Among these genes are: transposase, hormone receptors, homeobox proteins, defensin, actins, and several types of collagens. While our method is not capable of detecting all cases of natural RNAi control, it points to a large number of potential cases that can be further verified by experimental work.  相似文献   

8.
Genome-wide analysis of gene function is essential for the post-genome era, and development of efficient and economical technology suitable for it has been in demand. Here we report a large-scale inactivation of the expressed genes in the nematode Caenorhabditis elegans. For this purpose, we have established a high-throughput "RNAi-by-soaking" methodology by modifying the conventional RNAi method [1, 2]. A set of tag-sequenced, nonredundant cDNAs corresponding to approximately 10,000 genes [3] (representing half of the predicted genes [4]) was used for the systematic RNAi analysis. We have processed approximately 2500 genes to date. In development, 27% of them showed detectable phenotypes, such as embryonic lethality, post-embryonic lethality, sterility, and morphological abnormality. Of these, we analyzed the phenotypes of F1 sterility in detail, and we have identified 24 genes that might play important roles in germline development. Combined with the ongoing analysis of expression patterns of these cDNAs [3, 5], the functional information obtained in this work will provide a starting point for the further analysis of each gene. Another finding from this screening is that the incidence of essential genes is significantly lower in the X chromosome than in the autosomes.  相似文献   

9.
The soybean cyst nematode (SCN; Heterodera glycines) is a devastating obligate parasite of Glycine max (soybean) causing one billion dollars in losses to the US economy per year and over ten billion dollars in losses worldwide. While much is understood about the pathology of H. glycines, its genome sequence is not well characterized or fully sequenced. We sought to create bioinformatic tools to mine the H. glycines nucleotide database. One way is to use a comparative genomics approach by anchoring our analysis with an organism, like the free-living nematode Caenorhabditis elegans. Unlike H. glycines, the C. elegans genome is fully sequenced and is well characterized with a number of lethal genes identified through experimental methods. We compared an EST database of H. glycines with the C. elegans genome. Our goal was identifying genes that may be essential for H. glycines survival and would serve as an automated pipeline for RNAi studies to both study and control H. glycines. Our analysis yielded a total of nearly 8334 conserved genes between H. glycines and C. elegans. Of these, 1508 have lethal phenotypes/phenocopies in C. elegans. RNAi of a conserved ribosomal gene from H. glycines (Hg-rps-23) yielded dead and dying worms as shown by positive Sytox fluorescence. Endogenous Hg-rps-23 exhibited typical RNA silencing as shown by RT-PCR. However, an unrelated gene Hg-unc-87 did not exhibit RNA silencing in the Hg-rps-23 dsRNA-treated worms, demonstrating the specificity of the silencing.  相似文献   

10.
11.
Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify "phenotypic signatures", which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent "connectors" between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways.  相似文献   

12.
13.
RNA interference (RNAi) is a cellular process by which an mRNA is targeted for degradation by a small interfering RNA that contains a strand complementary to a fragment of the target mRNA, resulting in sequence specific inhibition of gene expression. The discovery of RNAi enabled the use of loss‐of‐function analyses in many non‐model insects other than Drosophila to elucidate the roles of specific genes. The RNAi approach has been widely used on insects in several fields, including embryogenesis, pattern formation, reproduction, biosynthesis and behavior. The increasing availability of insect genomes has made the RNAi technique an indispensable technique for characterizing gene functions in insects. Here we review the current status of RNAi‐based experiments in insects and the applications of RNAi for species‐specific insecticides, focusing on non‐drosophilid insects. We also identify future applications for RNAi‐based studies in Entomology.  相似文献   

14.
15.
RNA interference (RNAi) has been used extensively in model organisms such as Caenorhabditis elegans. Methods developed for RNAi in C. elegans have also been used in parasitic nematodes. However, RNAi in parasitic nematodes has been unsuccessful or has had limited success. Studies of genes essential for RNAi in C. elegans and of RNAi in Caenorhabditis spp. other than C. elegans suggest two complementary, and testable, hypotheses for the limited success of RNAi in animal parasitic nematodes. These are: (i) that the external supply of double stranded RNA (dsRNA) to parasitic nematodes is inappropriate to achieve RNAi and (ii) that parasitic nematodes are functionally defective in genes required to initiate RNAi from externally supplied dsRNA.  相似文献   

16.
Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.  相似文献   

17.
18.
With the sequencing of the human genome and the genomes of most major model organisms completed, the systematic characterisation of gene functions remains a key challenge. During the past few years, RNA interference (RNAi) has become a powerful tool to silence the expression of genes and analyse their loss-of-function phenotype when mutant alleles are not available. Genome-wide RNAi screens against all predicted genes have been successfully used to dissect a variety of biological processes in Caenorhabditis elegans. Recently, a genome-wide library of double-stranded RNAs, that target every gene in the Drosophila genome and that is suitable for high throughput cell-based assays, was published. In this paper, recent advances will be summarised. Screening strategies and applications as a route to comprehensively characterising gene function will be discussed.  相似文献   

19.
20.
Heritable gene silencing in Drosophila using double-stranded RNA   总被引:50,自引:0,他引:50  
RNA-mediated interference (RNAi) is a recently discovered method to determine gene function in a number of organisms, including plants, nematodes, Drosophila, zebrafish, and mice. Injection of double-stranded RNA (dsRNA) corresponding to a single gene into organisms silences expression of the specific gene. Rapid degradation of mRNA in affected cells blocks gene expression. Despite the promise of RNAi as a tool for functional genomics, injection of dsRNA interferes with gene expression transiently and is not stably inherited. Consequently, use of RNAi to study gene function in the late stages of development has been limited. It is particularly problematic for development of disease models that reply on post-natal individuals. To circumvent this problem in Drosophila, we have developed a method to express dsRNA as an extended hairpin-loop RNA. This method has recently been successful in generating RNAi in the nematode Caenorhabditis elegans. The hairpin RNA is expressed from a transgene exhibiting dyad symmetry in a controlled temporal and spatial pattern. We report that the stably inherited transgene confers specific interference of gene expression in embryos, and tissues that give rise to adult structures such as the wings, legs, eyes, and brain. Thus, RNAi can be adapted to study late-acting gene function in Drosophila. The success of this approach in Drosophila and C. elegans suggests that a similar approach may prove useful to study gene function in higher organisms for which transgenic technology is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号