首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging and senescence of the budding yeast Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The budding yeast Saccharomyces cerevisiae has a limited life span, defined by the number of times an individual cell divides. Longevity in this organism involves a genetic component. Several morphological and physiological changes are associated with yeast aging and senescence. One of these, an increase in generation time with age, provides a 'biomarker' for the aging process. This increase in generation time has revealed the operation of a 'senescence factor(s)', which is likely to be a product of age-specific gene expression. The Cell Spiral Model indicates coordination of successive cell cycles to be inherent in the determination of life span. It is proposed that life expectancy depends on the function of a stochastic trigger during aging that sets in motion a programme leading to cell senescence and death.  相似文献   

2.
3.
The molecular mechanisms that cause organismal aging are a topic of intense scrutiny and debate. Dietary restriction extends the life span of many organisms, including yeast, and efforts are underway to understand the biochemical and genetic pathways that regulate this life span extension in model organisms. Here we describe the mechanism by which dietary restriction extends yeast chronological life span, defined as the length of time stationary yeast cells remain viable in a quiescent state. We find that aging under standard culture conditions is the result of a cell-extrinsic component that is linked to the pH of the culture medium. We identify acetic acid as a cell-extrinsic mediator of cell death during chronological aging, and demonstrate that dietary restriction, growth in a non-fermentable carbon source, or transferring cells to water increases chronological life span by reducing or eliminating extracellular acetic acid. Other life span extending environmental and genetic interventions, such as growth in high osmolarity media, deletion of SCH9 or RAS2, increase cellular resistance to acetic acid. We conclude that acetic acid induced morality is the primary mechanism of chronological aging in yeast under standard conditions.  相似文献   

4.
The yeast Saccharomyces cerevisiae has a finite replicative life span. Yeasts possess two prohibitins, Phb1p and Phb2p, in similarity to mammalian cells. These proteins are located in the inner mitochondrial membrane, where they are involved in the processing of newly-synthesized membrane proteins. We demonstrate that the elimination of one or both of the prohibitin genes in yeast markedly diminished the replicative life span of cells that lack fully-functional mitochondria, while having no effect on cells with functioning mitochondria. This deleterious effect was suppressed by the deletion of the RAS2 gene. The expression of PHB1 and PHB2 declined gradually up to 5-fold during the life span. Cells in which PHB1 was deleted in conjunction with the absence of a mitochondrial genome displayed remarkable changes in mitochondrial morphology, distribution, and inheritance. This loss of mitochondrial integrity was not seen in cells devoid of PHB1 but possessing an intact mitochondrial genome. In a subset of the cells, the changes in mitochondrial integrity were associated with increased production of reactive oxygen species, which co-localized with the altered mitochondria. The mitochondrial deficits described above were all suppressed by deletion of RAS2. Our data, together with published information, are interpreted to provide a unified view of the role of the prohibitins in yeast aging. This model posits that the key initiating event is a decline in mitochondrial function, which leads to progressive oxidative damage that is exacerbated in the absence of the prohibitins. This aggravation of the initial damage is ameliorated by the suppression of the production of mitochondrial proteins in the absence of Ras2p signaling of mitochondrial biogenesis.  相似文献   

5.
The yeast Saccharomyces cerevisiae is mortal. Before they die, individual yeasts bud repeatedly producing a finite number of progeny, which have the capacity for a full life span. A feature of aging in many species is the waning of resistance to stress. To determine whether this is the case in yeast, we have examined the survival (viability) of age-synchronized populations of yeasts of various ages, spanning youth, midlife, and old age, after irradiation with ultraviolet light (UV). Resistance to UV was biphasic. There was an increase through midlife, followed by a precipitous decline. For comparison, another mutagenic agent, ethyl methanesulfonate (EMS), was tested in the same way. The response was very different. A uniphase decrease in resistance to this DNA-alkylating agent was found with a plateau later in life. The results argue that the increase in resistance to UV with age is an active process and not simply a monotonic age change. RAS2 is among the genes that determine yeast longevity. This gene is preferentially expressed in young cells and has a life span-extending effect on yeasts. One known function of RAS2 is to mount a protective response to irradiation by UV, which occurs independently of DNA damage. The distinction between UV and EMS found here is consistent with the notion that resistance to UV plays a role in yeast longevity in a manner not related to DNA damage. Furthermore, it suggests that RAS2 may participate in this response. We have found that RAS2 expression and UV resistance coincide in middle-aged yeasts bolstering this possibility. These data and the eclipse in activity of several longevity determining genes at midlife in yeasts also raise the possibility that active life maintenance processes function through this period, after which the organism operates on any remaining reserves until death. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The yeastSaccharomyces cerevisiaehas a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently early in life. The increased longevity was due to a reduction in the mortality rate that persisted over many cell divisions (generations) but was not permanent. The genesRAS1andRAS2were necessary to observe this effect of heat stress. TheRAS2gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether.RAS1,on the other hand, appears to have a role in signaling life extension induced by transient, mild heat stress, which is distinct from its life-span-curtailing effect in the absence of stress and its lack of involvement in the response to chronic heat stress. This distinction between theRASgenes may be partially related to their different effects on growth-promoting genes and stress-responsive genes. Theras2mutation clearly hindered resumption of growth and recovery from stress, while theras1mutation did not. TheHSP104gene, which is largely responsible for induced thermotolerance in yeast, was necessary for life extension induced by transient heat stress. An interaction between mitochondrial petite mutations and heat stress was found, suggesting that mitochondria may be necessary for life extension by transient heat stress. The results raise the possibility that theRASgenes and mitochondria may play a role in the epigenetic inheritance of reduced mortality rate afforded by transient, mild heat stress.  相似文献   

7.
The replicative life span ofSaccharomyces cerevisiaewas previously shown to be modulated by the homologous signal transducers Ras1p and Ras2p in a reciprocal manner. We have used thermal stress as a life span modulator in order to uncover functional differences between theRASgenes that may contribute to their divergent effects on life span. Chronic exposure of cells throughout life to recurring heat shocks at sublethal temperatures decreased their replicative life span.ras2mutants, however, suffered the largest decrease compared to wild-type andras1mutant cells. The decrease was correlated with a substantial delay in resumption of budding upon recovery from these heat shocks, indicating an impaired renewal of cell cycling. Detailed analysis of gene expression showed that, during recovery,ras2mutants were selectively impaired in down-regulation of stress-responsive genes and up-regulation of growth-promoting genes. Our results suggest that one of the functions ofRAS2in maintaining life span, for whichRAS1does not substitute, is to ensure renewal of growth and cell division after bouts of stress that cells encounter during their life. This activity ofRAS2is effected by the cyclic AMP pathway. Overexpression ofRAS2,but notRAS2ser42which is deficient in the activation of adenylate cyclase, completely reversed the effect of chronic stress on life span. Thus,RAS2is limiting for longevity in the face of chronic stress. SinceRAS2is known to down-regulate stress responses, this demonstrates that for longevity the ability to recover from stress is at least as important as the ability to mount a stress response.  相似文献   

8.
G F Xu  B Lin  K Tanaka  D Dunn  D Wood  R Gesteland  R White  R Weiss  F Tamanoi 《Cell》1990,63(4):835-841
Sequencing of the neurofibromatosis gene (NF1) revealed a striking similarity among NF1, yeast IRA proteins, and mammalian GAP (GTPase-activating protein). Using both genetic and biochemical assays, we demonstrate that this homology domain of the NF1 protein interacts with ras proteins. First, expression of this NF1 domain suppressed the heat shock-sensitive phenotype of yeast ira1 and ira2 mutants. Second, this NF1 domain, after purification as a glutathione S-transferase (GST) fusion protein, strongly stimulated the GTPase activity of yeast RAS2 and human H-ras proteins. The GST-NF1 protein, however, did not stimulate the GTPase activity of oncogenic mutant ras proteins, H-rasVal-12 and yeast RAS2Val-19 mutants, or a yeast RAS2 effector mutant. These results establish that this NF1 domain has ras GAP activity similar to that found with IRA2 protein and mammalian GAP, and therefore may also regulate ras function in vivo.  相似文献   

9.
Reaching the limit of cell divisions, a phenomenon referred to as replicative aging, of the yeast Saccharomyces cerevisiae involves a progressive increase in the cell volume. However, the exact relationship between the number of cell divisions accomplished (replicative age), the potential for further divisions and yeast cell volume has not been investigated thoroughly. In this study an increase of the yeast cell volume was achieved by treatment with pheromone alpha for up to 18 h. Plotting the number of cell divisions (replicative life span) of the pheromone-treated cells as a function of the cell volume attained during the treatment showed an inverse linear relationship. An analogous inverse relationship between the initial cell volume and replicative life span was found for the progeny of the pheromone-treated yeast. This phenomenon indicates that attaining an excessive volume may be a factor contributing to the limitation of cellular divisions of yeast cells.  相似文献   

10.
11.
The genetic analysis of yeast longevity has illuminated the underlying molecular mechanisms of aging that invoke the importance of metabolic regulation, genetic stability and stress resistance in determination of life span. The RAS genes have emerged as important modulators of life-maintenance processes and of life span itself.  相似文献   

12.
The time course of gene expression in the adult fruit fly has been partially characterized by using enhancer trap and reporter gene constructs that mark 49 different genes. The relative intensity of the reporter protein in individual cells of the antennae was measured as a function of adult age. Most genes showed a graduated expression, and the intensity of expression had a reproducible and characteristic time course. Different genes displayed different temporal patterns of expression and more often than not the pattern of expression was complex. We found a number of genes having patterns that scaled with life span. In these cases the intensity of gene expression was found to be invariant with respect to biological time, when expressed as a fraction of the life span of the line. The scaling was observed even when life span was varied as much as threefold. Such scaling serves to (1) further demonstrate that deterministic mechanisms such as gene regulation act to generate the temporal patterns of expression seen during adult life, (2) indicate that control of these regulatory mechanisms is linked to life span, and (3) suggest mechanisms by which this control is accomplished. We have concluded that gene expression in the adult fly is often regulated in a fashion that allows for graduated expression over time, and that the regulation itself is changing throughout adult life according to some prescribed program or algorithm.  相似文献   

13.
Genetic analysis of mammalian GAP expressed in yeast   总被引:32,自引:0,他引:32  
We have designed a vector to express the mammalian GAP protein in the yeast S. cerevisiae. When expressed in yeast, GAP inhibits the function of the human H-rasgly12 protein, but not that of the H-rasval12 protein, and complements the loss of IRA1. IRA1 is a yeast gene that encodes a protein with homology to GAP and acts upstream of RAS. Mammalian GAP can therefore function in yeast and interact with yeast RAS. Because expression of GAP complements ira1-mutants, we propose that GAP shares some biochemical functions with IRA1. Other studies indicate that IRA1 controls the level of RAS activity, presumably by regulating GTP hydrolysis. By analogy, we propose that GAP may play a similar role.  相似文献   

14.
Functional homology of mammalian and yeast RAS genes   总被引:87,自引:0,他引:87  
Yeast spores lacking endogenous RAS genes will not germinate. If such spores contain chimeric mammalian/yeast RAS genes or even the mammalian H-ras gene under the control of the galactose-inducible GAL10 promoter, they will germinate in the presence of galactose and produce viable haploid progeny dependent on galactose for continued growth and viability. These results indicate that the biochemical function of RAS proteins is essential for vegetative haploid yeast and that this function has been conserved in evolution since the progenitors of yeast and mammals diverged.  相似文献   

15.
UTH1 is a yeast aging gene that has been identified on the basis of stress resistance and longer life span of mutants. It was also shown to participate in mitochondrial biogenesis. The absence of Uth1p was found to trigger resistance to autophagy induced by rapamycin. Uth1p is therefore the first mitochondrial protein proven to be required for the autophagic degradation of mitochondria. Since this protein is also involved in yeast cell death induced by heterologous expression of the pro-apoptotic protein Bax, the results are discussed in the light of evidence suggesting a co-regulation of apoptosis and autophagy in mammalian cells.  相似文献   

16.
The number of revertants with restored ability to form colony increases in a time-dependent manner during long-term selective starvation of dense mutant microbial cultures. This is due to starvation-associated (also called adaptive) mutations that arise in a replication independent manner. Here we report that in Saccharomyces cerevisiae the frequency of starvation-associated reversions of mutant genes whose products are necessary for amino acids biosynthesis are influenced by Ras2/cAMP signaling pathway. This signaling pathway is a yeast general regulatory pathway involved in nutritional sensing, UV response, sporulation control and life span control and its changes are manifested in both, cell cycle and life cycle. Inactivation of the RAS2 gene causes an increase in number of starvation-associated revertants in comparison to an isogenic wild type strain and a strain with constitutively activated Ras2/cAMP signaling pathway. Therefore, we suggest that starvation-associated mutagenesis is different from spontaneous mutagenesis and is related to the cellular capacity to adopt distinct physiological states in response to environmental signals.  相似文献   

17.
18.
Biological activity of the mammalian RAP genes in yeast.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have screened expression libraries for mammalian cDNAs capable of suppressing defects in ras1- Schizosaccharomyces pombe. Both the RAP1A and RAP1B genes were identified in this manner. They suppress defects in cell morphology and sporulation, although not conjugation. In contrast, RAP genes do not suppress phenotypes in the yeast Saccharomyces cerevisiae that are deficient in RAS. Indeed, expression of RAP1A appears to antagonize the activated S. cerevisiae RAS2val19 gene. These results indicate that RAP proteins can interact with RAS targets, sometimes productively, sometimes nonproductively.  相似文献   

19.
The ras proto-oncogene in mammalian cells encodes a 21-kilodalton guanosine triphosphate (GTP)-binding protein. This gene is frequently activated in human cancer. As one approach toward understanding the mechanisms of cellular transformation by ras, the function of this gene in lower eucaryotic organisms has been studied. In the yeast Saccharomyces cerevisiae, the RAS gene products serve as essential function by regulating cyclic adenosine monophosphate metabolism. Stimulation of adenylyl cyclase is dependent not only on RAS protein complexed to GTP, but also on the CDC25 and IRA gene products, which appear to control the RAS GTP-guanosine diphosphate cycle. Although analysis of RAS biochemistry in S. cerevisiae has identified mechanisms central to RAS action, RAS regulation of adenylyl cyclase appears to be strictly limited to this particular organism. In Schizosaccharomyces pombe, Dictyostelium discoideum, and Drosophila melanogaster, ras-encoded proteins are not involved with regulation of adenylyl cyclase, similar to what is observed in mammalian cells. However, the ras gene product in these other lower eucaryotes is clearly required for appropriate responses to extracellular signals such as mating factors and chemoattractants and for normal growth and development of the organism. The identification of other GTP-binding proteins in S. cerevisiae with distinct yet essential functions underscores the fundamental importance of G-protein regulatory processes in normal cell physiology.  相似文献   

20.
Post-translational processing of a distinct group of proteins and polypeptides, including the a-factor mating pheromone and RAS proteins of Saccharomyces cerevisiae, results in the formation of a modified C-terminal cysteine that is S-isoprenylated and alpha-methyl esterified. We have shown previously that a membrane-associated enzymatic activity in yeast can mediate in vitro methylation of an isoprenylated peptide substrate and that this methyltransferase activity is absent in ste14 mutants. We demonstrate here that STE14 is the structural gene for this enzyme by expression of its product as a fusion protein in Escherichia coli, an organism in which this activity is lacking. We also show that a-factor, RAS1 and RAS2 are physiological methyl-accepting substrates for this enzyme by demonstrating that these proteins are not methylated in a ste14 null mutant. It is notable that cells lacking STE14 methyltransferase activity exhibit no detectable impairment of RAS function or cell viability. However, we did observe a kinetic delay in the rate of RAS2 maturation and a slight decrease in the amount of membrane localized RAS2. Thus, methylation does not appear to be essential for RAS2 maturation or localization, but the lack of methylation can have subtle effects on the efficiency of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号