首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
5.
Kinetics of RNA synthesis by vesicular stomatitis virus particles   总被引:25,自引:0,他引:25  
  相似文献   

6.
7.
The minimal RNA synthesis machinery of non-segmented negative-strand RNA viruses comprises a genomic RNA encased within a nucleocapsid protein (N-RNA), and associated with the RNA-dependent RNA polymerase (RdRP). The RdRP is contained within a viral large (L) protein, which associates with N-RNA through a phosphoprotein (P). Here, we define that vesicular stomatitis virus L initiates synthesis via a de-novo mechanism that does not require N or P, but depends on a high concentration of the first two nucleotides and specific template requirements. Purified L copies a template devoid of N, and P stimulates L initiation and processivity. Full processivity of the polymerase requires the template-associated N protein. This work provides new mechanistic insights into the workings of a minimal RNA synthesis machine shared by a broad group of important human, animal and plant pathogens, and defines a mechanism by which specific inhibitors of RNA synthesis function.  相似文献   

8.
9.
Vesicular stomatitis virus has been a preferred system to study evolution for several decades. New approaches to antiviral treatment, such as lethal mutagenesis, stem from investigations done with VSV. Recent work has shed new light in the way we view neutrality, a fundamental concept to understand the evolutionary history of RNA viruses.  相似文献   

10.
11.
12.
The RNA products synthesized in vitro by the virion-associated RNA polymerase of purified vesicular stomatitis virus have previously been shown to contain two distinct 5′-terminal sequences. The mRNA species contain the blocked 5′-terminal G(5′)ppp(5′)A-A-C-A-G sequence and the initiated lead-in RNA segment (approximately 50 bases) contains the unblocked 5′ ppA-C-G sequence. In the present studies, using inosine 5′-triphosphate in place of GTP it is shown that RNA species as large as 14.5S contain an unblocked 5′-ppA-C-(I) sequence indicating that the GTP analogue permits synthesis of a possible precursor of viral mRNA in vitro.  相似文献   

13.
G J Freeman  D D Rao  A S Huang 《Gene》1979,5(2):141-157
The single-stranded RNA genome of vesicular stomatitis virus (VSV, Indiana serotype, San Juan strain) yields approx. 75 RNase T1-resistant oligonucleotides ranging in size from 10 to 50 bases. Each of the five structural genes, isolated as duplex RNA molecules hybridized to complementary mRNA, contains two or more of these large oligonucleotides. One of the oligonucleotides is identified as part of the non-coding region near the 3' end of the genome. Comparison of these results with others indicate that the RNA sequence of VSV is apparently stable in the laboratory but not in the wild. RNase T1-resistant oligonucleotides are also shown for all five VSV mRN species. Whether the mRNA for these digestions are are isolated from duplex RNA molecules or as single-stranded RNA species, the oligonucleotide patterns for each mRNA are virtually identical, indicating that each mRNA is transcribed from contiguous sequences on the genome. Comparison with published oligonucleotide patterns obtained from other isolates of VSV or from VSV deletion mutants indicate that identity and changes in their genome structure can be correlated with specific structural genes.  相似文献   

14.
Genomic replication of the negative-strand RNA viruses is dependent upon protein synthesis. To examine the requirement for protein synthesis in replication, we developed an in vitro system that supports the genome replication of defective interfering particles of the negative-strand rhabdovirus vesicular stomatitis virus (VSV), as a function of protein synthesis (Wertz, J. Virol. 46:513-522, 1983). The system consists of defective interfering nucleocapsid templates and an mRNA-dependent reticulocyte lysate to support protein synthesis. We report here an analysis of the requirement for individual viral proteins in VSV replication. Viral mRNAs purified by hybridization to cDNA clones were used to direct the synthesis of individual proteins in the in vitro system. By this method, it was demonstrated that the synthesis of the VSV nucleocapsid protein, N, alone, resulted in the replication of genome-length RNA by both defective interfering intracellular nucleocapsids and virion-derived nucleocapsids. Neither the viral phosphoprotein, NS, nor the matrix protein, M, supported RNA replication. The amount of RNA replication for a given amount of N protein was the same in reactions in which either all of the VSV proteins or only N protein were synthesized. In addition, RNA replication products synthesized in reactions containing only newly made N protein assembled with the N protein to form nucleocapsids. These results demonstrate that the major nucleocapsid protein (N) can by itself fulfill the requirement for protein synthesis in RNA replication and allow complete replication, i.e., initiation and elongation, as well as encapsidation of genome-length progeny RNA.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号