首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels.  相似文献   

2.
The PhoE porin of Escherichia coli is induced by phosphate deprivation and when purified, forms moderately anion-selective channels in lipid bilayer membranes. To further investigate the basis of anion selectivity, PhoE was chemically acetylated with acetic anhydride. Acetylation modified the mobility and staining characteristics of the PhoE porin on SDS-polyacrylamide gel electrophoresis but the acetylated protein was still found in its normal trimeric state after solubilization in SDS at low temperatures. Furthermore, the acetylated PhoE porin retained its ability to reconstitute into lipid bilayer membranes and the single channel conductance in 1 M KCl was unaltered. Zero-current potential measurements demonstrated that whereas the native PhoE porin was anion-selective, a 30-40-fold increase in preference for cations upon acetylation resulted in the acetylated PhoE porin being cation-selective. Increasing the pH of KCl solutions bathing lipid bilayer membranes from pH 3 to pH 6 caused symmetrical 4-fold increases in the selectivity of both the native and acetylated PhoE proteins for cations. In contrast, increasing the pH from 7 to 9 caused a 2.5-fold increase in selectivity only for the native PhoE porin. These results suggest that the basis of anion selectivity in the native PhoE porin is fixed protonated amino groups (possibly on lysines) in or near the channel, and furthermore indicate that deprotonated carboxyl groups have a strong influence on ion selectivity.  相似文献   

3.
Topology of PhoE porin: the 'eyelet' region   总被引:11,自引:0,他引:11  
A model for the topology of the PhoE porin has been proposed according to which the polypeptide traverses the outer membrane sixteen times mostly as amphipathic β-sheets, thereby exposing eight loops at the cell surface. Until now, no evidence has been obtained for the surface exposure of the third loop. Recently, the structure of porin of Rhodobacter capsulatus has been determined. The proposed model of PhoE is very similar to the structure of the R capsulatus porin, which has an ‘eyelet’ region, extending into the interior of the pore. The proposed third external loop of PhoE might form a similar ‘eyelet’ region. To determine the location of the predicted third external loop of PhoE, multiple copies of an oligonucleotide linker encoding an antigenic determinant of VP1 protein of foot-and-mouth disease virus (FMDV) were inserted. All hybrid proteins were properly inserted in the outer membrane. The monoclonal antibody MA11, directed against the linear FMDV epitope, was able to bind only to intact cells expressing a hybrid PhoE protein with at least three copies of the FMDV epitope present. Antibiotic sensitivity tests and single-channel conductance measurements revealed that the insertions influenced the channel size. These results are consistent with a location of the third loop of PhoE within the pore channel.  相似文献   

4.
Molecular design of PhoE porin and its functional consequences   总被引:18,自引:0,他引:18  
The three-dimensional structure of PhoE porin from Escherichia coli, negatively stained with uranyl acetate, has been determined by electron crystallographic techniques to a resolution of about 18 A. The structure shows that PhoE porin consists of trimeric stain-filled channels as the basic unit. The trimeric channels converge as they transverse the membrane but they do not merge. Our three-dimensional structure of PhoE porin indicates that there is a short, narrower segment of channel, which extends beyond the visible strain-filled portion of the channel. The map of glucose-embedded PhoE porin in projection normal to the membrane has also been determined to a resolution of 6.5 A. The projected map shows trimeric ring-like structures, which are presumably cylindrical domains of beta-sheet. At the 3-fold symmetry axis of the trimer, there is a low density region, which is suggested to be a site of lipopolysaccharide that is required for channel and bacteriophage receptor activities. The structural model of the PhoE monomer consists of a flattened cylinder with a large water-filled vestibule about 35 A long with an elliptically shaped opening that is 27 A along the major axis and 18 A along the minor axis. The vestibule has a narrower extension about 10 A long with an average diameter of about 10 A. The vestibule wall is formed by beta-sheet, which may have a large fraction of the beta-strands oriented normal to membrane. Our structural model provides a clue as to how the surface charges on the outer membrane may regulate the permeation of ionic solutes through the channel.  相似文献   

5.
We used patch clamp analysis to compare the electrophysiological behavior of two related porins from Escherichia coli, the anion-specific PhoE and the cation-selective OmpF. Outer membrane fractions were obtained from strains expressing just one of these porin types, and the channels were reconstituted into liposomes without prior purification. We show that the orientation of the reconstituted channels is not random and is the same for both PhoE and OmpF. Like cation-selective porins, PhoE shows fast and slow gating to closed levels of various amplitudes, testifying that the channels visit multiple functional states and behave as cooperative entities. The voltage-dependence of PhoE closure is asymmetric, but strikingly, occurs at voltages of inverse polarity from those promoting closures of OmpC and OmpF. Both slow kinetics and inverse voltage-dependence are removed when 70 amino acids from the N-terminal of OmpF are introduced into the homologous region of PhoE. This novel observation regarding the voltage-dependence of the two channel types, along with published results on PhoE and OmpF mutants, allows us to propose a molecular mechanism for voltage sensing and sensor charge movements in bacterial porins. It also offers new cues on the possible physiological relevance in bacteria of this common form of channel modulation.  相似文献   

6.
The inhibition of the anion-selective PhoE porin by ATP and of the cation-selective OmpF porin by polyamines has been previously documented. In the present study, we have extended the comparison of the inhibitor-porin pairs by investigating the effect of anions (ATP and aspartate) and positively charged polyamines (spermine and cadaverine) on both OmpF and PhoE with the patch-clamp technique, and by comparing directly the gating kinetics of the channels modulated by their respective substrates. The novel findings reported here are (1) that the activity of PhoE is completely unaffected by polyamines, and (2) that the kinetic changes induced by ATP on PhoE or polyamines on OmpF suggest different mechanisms of inhibition. ATP induces a high degree of flickering in the PhoE-mediated current and appears to behave as a blocker of ion flow during its presumed transport through PhoE. Polyamines modulate the kinetics of openings and closings of OmpF, in addition to promoting a blocker-like flickering activity. The strong correlation between sensitivity to inhibitors and ion selectivity suggests that some common molecular determinants are involved in these two properties and is in agreement with the hypothesis that polyamines bind inside the pore of cationic porins.  相似文献   

7.
Because of conflicting results from differing techniques, the degree of voltage sensitivity of Escherichia coli porins in planar bilayers is still a matter of debate. In order to provide the first comparative study, OmpF porin was purified in three ways; firstly as native outer membrane vesicles, secondly as salt-extracted porin trimers in sodium dodecyl sulphate and thirdly as solubilised trimers extracted with octyl-polyoxyethylene (Octyl-POE). These methods represent the major approaches to porin isolation and purification. All three were reconstituted into Schindler-type bilayers. Detergent-solubilised OmpF was also reconstituted into Montal-Mueller- and Mueller-Rudin-type bilayers. In all cases voltage-dependent closing of OmpF was observed. Octyl-POE-extracted PhoE porin was similarly investigated in all three types of planar bilayer. Two membrane-formation techniques appeared genuinely to alter the voltage sensitivity of the porins they contained. Firstly, porins in membranes formed by the Montal-Mueller technique sometimes showed an increase in voltage sensitivity during the first 30 min after bilayer formation. Secondly, membranes formed by the Mueller-Rudin technique on thick polyethylene septa showed both poor solvent drainage and a significantly reduced porin voltage sensitivity.  相似文献   

8.
By comparing the hydrophilicity profiles and sequences of porin from Rhodobacter capsulatus with those of OmpF and PhoE from Escherichia coli, a set of insertions and deletions for alignment of the sequences has been deduced. With this alignment a similar folding of OmpF and PhoE has been predicted as found by X-ray structure analysis of porin from Rhodobacter capsulates. Furthermore, the orientation of the porin trimer in the outer membrane was inferred from topological data on PhoE. According to this result a single channel of approx. 30 A diameter starts at the outer surface. Near the middle of the outer membrane bilayer this channel branches out into three separate channels, each running within a single porin monomer to the periplasmic surface.  相似文献   

9.
An integral membrane protein forming channels across Escherichia coli outer membranes, porin, has been crystallized using a polyethylene glycol or salt-generated two-phase system. Monodispersity and homogeneity of protein-detergent complexes were found to be prerequisites for reproducible formation of crystals amenable to X-ray structural analysis. By varying pH, detergent and buffer type, large crystals of three different habits can be obtained, two of which are discussed in this paper. The tetragonal form (space group P4(2); unit cell dimensions, a = b = 155 A, c = 172 A) is suitable for X-ray analysis. Low temperature induces a change of the space group to P4(2)22, with a single trimer in the asymmetric unit. This crystal form diffracts to a resolution beyond 2.9 A. The hexagonal crystal form (space group P6(3)22; unit cell dimensions, a = b = 93 A, c = 220 A) is limited in resolution to 4.5 A, but reveals a packing arrangement very similar to that in two-dimensional membrane-like crystalline arrays.  相似文献   

10.
Three-dimensional electron diffraction of PhoE porin to 2.8 A resolution   总被引:1,自引:0,他引:1  
A three-dimensional set of electron diffraction intensities of PhoE porin embedded in trehalose extending to 2.8 A resolution has been collected and analyzed. The strongest high-resolution intensities are distributed as a figure of revolution about the z*-axis and are located primarily in a resolution range of 4.5 A to 5.0 A. Within this region, centered near 4.8 A resolution the brightest intensities are clustered about inclination angles of 35 degrees and 0 degrees from the a*, b* plane. This distribution of intensities indicates that the beta-sheet in PhoE porin is arranged to form a cylinder-like structure that contains major populations of beta-sheet strands tilted an average of 35 degrees and 0 degrees with respect to the membrane plane normal. This cylindrical structure has been seen previously in the high-resolution projection map of PhoE as an elliptical ring of high density.  相似文献   

11.
OmpC and OmpF, outer membrane porin proteins, are important in the maintenance of the cell surface structure of Escherichia coli cells [T. Nogami and S. Mizushima, J. Bacteriol., 156, 402 (1983)]. Mutants lacking both proteins are unstable and frequently revert or mutate to strains which either have regained one or both of the proteins or constitutively produce PhoE, another porin protein. In the present work, the structural importance of PhoE was studied in relation to OmpC. and OmpF. The strain devoid of both OmpC and OmpF was highly susceptible to Tris-HCl buffer at a concentration of 120 mm in terms of viability and cell structure. This strain was also susceptible to osmotic shock. In contrast, the strain possessing PhoE in place of OmpC/OmpF was as stable as the strain possessing OmpC/OmpF against these treatments. PhoE, like OmpC and OmpF, was assembled into a hexagonal lattice with lipopolysaccharide that covered the peptidoglycan sacculus. These results suggest that PhoE can take the place of OmpC/OmpF in the maintenance of the cell surface structure. The importance of porins in general in the maintenance of the cell structure is discussed.  相似文献   

12.
Wild-type Escherichia coli K-12 produces two porins, OmpF (protein 1a) and OmpC (protein 1b). In mutants deficient in both of these "normal" porins, secondary mutants that produce a "new" porin, protein PhoE (protein E), are selected for. We determined the properties of the channels produced by each of these porins by measuring the rates of diffusion of various cephalosporins through the outer membrane in strains producing only one porin species. We found that all porin channels retarded the diffusion of more hydrophobic cephalosporins and that with monoanionic cephalosporins a 10-fold increase in the octanol-water partition coefficient of the solute produced a 5- to 6-fold decrease in the rate of penetration. Electrical charges of the solutes had different effects on different channels. Thus, with the normal porins (i.e., OmpF and OmpC proteins) additional negative charge drastically reduced the penetration rate through the channels, whereas additional positive charge significantly accelerated the penetration. In contrast, diffusion through the PhoE channel was unaffected by the presence of an additional negative charge. We hypothesize that the relative exclusion of hydrophobic and negatively charged solutes by normal porin channels is of ecological advantage to E. coli, which must exclude hydrophobic and anionic bile salts in its natural habitat. The properties of the PhoE porin are also consistent with the recent finding (M. Argast and W. Boos, J. Bacteriol. 143:142-150, 1980; J. Tommassen and B. Lugtenberg, J. Bacteriol. 143:151-157, 1980) that its biosynthesis is derepressed by phosphate starvation; the channel may thus act as an emergency pore primarily for the uptake of phosphate and phosphorylated compounds.  相似文献   

13.
We observed that wild-type Escherichia coli utilized a linear polyphosphate with a chain length of 100 phosphate residues (poly-P100) as the sole source of phosphate in growth medium. A mutation in the gene phoA of alkaline phosphatase or phoB, the positive regulatory gene, prevented growth in this medium. Since no alkaline phosphatase activity was detected outside the wild-type cells, the periplasmic presence of the enzyme was necessary for the degradation of polyphosphate. A 90% reduction in the activity of periplasmic acid phosphatase with a pH optimum of 2.5 (delta appA mutants) did not affect polyphosphate utilization. Of the porins analyzed (OmpC, OmpF, and PhoE), the phoB-inducible porin PhoE was not essential since its absence did not prevent growth. To study how poly-P100 diffused into the cells, we used high-resolution 31P nuclear magnetic resonance (31P NMR) spectroscopy. The results suggest that poly-P100 entered the periplasm and remained in equilibrium between the periplasm and the medium. When present individually, porins PhoE and OmpF facilitated a higher permeability for poly-P100 than porin OmpC did. The degradation of polyphosphate by intact cells of E. coli observed by 31P NMR showed a time-dependent increase in cellular phosphate and a decrease in polyphosphate concentration.  相似文献   

14.
K Bauer  R Benz  J Brass    W Boos 《Journal of bacteriology》1985,161(2):813-816
A mutant of Salmonella typhimurium was selected that is constitutive for the pho regulon. It exhibited constitutive glycerol-3-phosphate transport activity and synthesized a new outer membrane porin. Upon measurement of porin activity in black lipid films, it exhibited anion selectivity. It therefore appears analogous to the Escherichia coli PhoE porin.  相似文献   

15.
Purified OmpF, OmpC, NmpC, PhoE and Lc (Protein 2) porins from the Escherichia coli outer membrane were incorporated into planar phospholipid bilayer membranes and the permeability properties of the pores studied. Triton X-100 solubilised porin samples showed large and reproducible increases in membrane conductivity composed of discreet single-channel events. The magnitude of the cation selectivity found for the porins was in the order OmpC greater than OmpF greater than NmpC = Lc; PhoE was anion selective. For the cation selective porins the cation/anion permeability ratios in a variety of solutes ranged from 6 to 35. Further information on the internal structure of the porins was obtained by examination of the single-channel conductance and this was used to interpret macroscopic observations and to estimate single-channel diameters. The same porins solubilised in SDS exhibited slight conductance increase with no observable single-channel activity. Use of on-line microcomputer techniques confirmed the ohmic current vs. voltage behaviour for all the single porin channels examined.  相似文献   

16.
Role of lysines in ion selectivity of bacterial outer membrane porins   总被引:3,自引:0,他引:3  
The epsilon-amino groups of available lysine residues of the OmpC, OmpF and PhoE porin proteins of Escherichia coli and of the protein P porin of Pseudomonas aeruginosa, were modified by the bulky reagent trinitrobenzenesulphonic acid. Approximately 78% of the lysines of the anion-selective protein P and PhoE porins were modified whereas only 40-50% of the lysines of the cation selective OmpF and OmpC porins were altered. After modification, the three E. coli porins had very similar high selectivities for cations over anions, in contrast to the native porins which varied 86-fold in ion selectivity. Despite the large size of the trinitrophenyl group attached to modified lysines (i.e., a disc of approx. 0.86 nm diameter X 0.36 nm high) relative to the reported size of the constrictions of the E. coli porins (1.0-1.2 nm diameter), only the anion-selective PhoE porin was substantially blocked after trinitrophenylation. The protein P porin channel was relatively unaffected by trinitrophenylation, in contrast to previous data showing dramatic effects of acetylation of lysines on protein P conductance and selectivity. This favoured a model in which the critical lysines involved in anion binding by protein P were present in a constriction of the channel that was too small for trinitrobenzenesulphonic acid to enter. Overall, the data suggest that both the number and relative position of charged lysines are major determinants of ion selectivity.  相似文献   

17.
Native oligomers of three Pseudomonas aeruginosa outer membrane porin proteins and one Escherichia coli porin were demonstrated by using a chemical cross-linking technique. P. aeruginosa protein F, the major constitutive outer membrane porin, was cross-linked to dimers in outer membrane and whole-cell cross-linking experiments. Purified preparations of P. aeruginosa proteins F, D1 (glucose induced), and P (phosphate starvation induced) and E. coli protein PhoE (Ic) were also cross-linked to reveal dimers and trimers upon two-dimensional sodium dodecyl sulfate-polyacrylamide electrophoretic analysis. Cross-linking of protein F was abolished by pretreatment of the protein with sodium dodecyl sulfate, indicating that the cross-linked products were due to native associations in the outer membrane.  相似文献   

18.
The PhoB/PhoR-dependent response to inorganic phosphate (Pi)-starvation in Vibrio cholerae O1 includes the expression of vc0719 for the response regulator PhoB, vca0033 for an alkaline phosphatase and vca1008 for an outer membrane protein (OMP). Sequences with high identity to these genes have been found in the genome of clinical and environmental strains, suggesting that the Pi-starvation response in V. cholerae is well conserved. VCA1008, an uncharacterized OMP involved in V. cholerae pathogenicity, presents sequence similarity to porins of Gram-negative bacteria such as phosphoporin PhoE from Escherichia coli . A three-dimensional model shows that VCA1008 is a 16-stranded pore-forming β-barrel protein that shares three of the four conserved lysine residues responsible for PhoE anionic specificity with PhoE. VCA1008 β-barrel apparently forms trimers that collapse into monomers by heating. Properties such as heat modifiability and resistance to denaturation by sodium dodecyl sulfate at lower temperatures permitted us to suggest that VCA1008 is a classical porin, more precisely, a phosphoporin due to its Pi starvation-induced PhoB-dependent expression, demonstrated by electrophoretic mobility shift assay and promoter fusion- lacZ assays.  相似文献   

19.
The immunochemistry and structure of enteric bacterial porins are critical to the understanding of the immune response to bacterial infection. We raised 41 monoclonal antibodies (MAbs) to Salmonella typhimurium OmpD and OmpC porin trimers and monomers. Enzyme-linked immunosorbent assays, immunoprecipitations, and/or Western immunoblot techniques indicated that 39 MAbs (11 anti-trimer and 28 anti-monomer) in the panel are porin specific and one binds to the lipopolysaccharide; the specificity of the remaining MAb probably lies in the porin-lipopolysaccharide complex. Among the porin-specific MAbs, 10 bound cell-surface-exposed epitopes, one reacted with a periplasmic epitope, and the remaining 28 recognized determinants that are buried within the outer membrane bilayer. Many of the MAbs reacting with surface-exposed epitopes were highly specific, recognizing only the homologous porin trimers; this suggests that the cell-surface-exposed regions of porins tends to be quite different among S. typhimurium OmpF, OmpC, and OmpD porins. Immunological cross-reaction showed that S. typhimurium OmpD was very closely related to Escherichia coli NmpC and to the Lc porin of bacteriophage PA-2. Immunologically, E. coli OmpG and protein K also appear to belong to the family of closely related porins including E. coli OmpF, OmpC, PhoE, and NmpC and S. typhimurium OmpF, OmpC, and OmpD. It appears, however, that S. typhimurium "PhoE" is not closely related to this group. Finally, about one-third of the MAbs that presumably recognize buried epitopes reacted with porin domains that are widely conserved in 13 species of the family Enterobacteriaceae, but apparently not in the seven nonenterobacterial species tested. These data are evaluated in relation to host immune response to infection by gram-negative bacteria.  相似文献   

20.
J C Todt  W J Rocque  E J McGroarty 《Biochemistry》1992,31(43):10471-10478
Porin is a trimeric channel-forming protein in the outer membrane of Gram-negative bacteria. Functions of the porins OmpF, OmpC, and PhoE from Escherichia coli K12 were analyzed at various pHs. Preliminary results from bilayer lipid membrane and liposome swelling assays indicated that in vitro porin has at least two open-channel configurations with a small and a large size. The small channels were stabilized at low pH while the larger channels were detected under basic conditions. The size switch occurred over a very narrow range near neutral pH, and the two major open-channel configurations responded differently to variations in voltage. The presence of two or more pH-dependent substates of porin could explain the variability in pore diameter measured by others and suggests a more dynamic role for porin in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号