首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Photosynthetic characteristics were studied in several F1 hybrids between C4 and C3-C4 species of Flaveria. Stable carbon isotope ratios, O2 inhibition of apparent photosynthesis, and phosphoenolpyruvate carboxylase activities in the hybrids were similar to the means for the parents. Values of CO2 compensation concentrations were nearer to those of the C4 parent and apparent photosynthesis was below that of both parents, being only 60 and 74% of that of the lowest (C3-C4) parent in two experiments. Reductions of CO2 compensation concentration and O2 inhibition of apparent photosynthesis as well as increases in carbon isotope ratios and phosphoenolpyruvate carboxylase activities compared to values in C3-C4 species suggest transfer of a limited degree of C4 photosynthesis to the F1 hybrids. However, the lower apparent photosynthesis of the hybrids suggests that transfer of C4 characteristics to non-C4 species is detrimental unless characteristics associated with C4 photosynthesis are fully developed. There was a highly significant negative correlation (r = −0.90) between CO2 compensation concentration and the logarithm of phosphoenolpyruvate carboxylase activity in the parents and hybrids, suggesting involvement of this enzyme in controlling the CO2 compensation concentration. Although bundle-sheath cells were more developed in leaves of hybrids than in C3-C4 parents, they appeared to contain lower quantities of organelles than those of the C4 parent. Reduced quantities of organelles in bundle-sheath cells could indicate incomplete compartmentation of partial pathways of the C4 cycle in the hybrids. This may mean that the reduction of CO2 compensation and O2 inhibition of apparent photosynthesis relative to the C3-C4 parents is less dependent on fully developed Kranz anatomy than is increased apparent photosynthesis.  相似文献   

2.
Photosynthesis: action spectra for leaves in normal and low oxygen   总被引:1,自引:1,他引:0       下载免费PDF全文
The action spectrum of apparent photosynthesis for attached radish (Raphanus sativus L. var. Early Scarlet Globe) and corn (Zea mays L. var. Pride V.) leaves was measured at 300 μl/l CO2 and both 21% and 2% O2. The spectra were measured at light intensities where apparent photosynthesis was proportional to intensity. For radish, a high compensation point plant, oxygen had an inhibiting effect on photosynthesis at all wavelengths from 402 to 694 mμ. If a constant rate of photosynthesis at 21% O2 for the different wavelengths was chosen, then the percent increase in net CO2 fixation at 2% O2 was constant. For corn, a low compensation point plant, no inhibitory effect of oxygen concentration from 2% to 21% O2 was found over the visible spectrum. The CO2 compensation point for light intensities greater than the light compensation point was found to be constant and independent of wavelength for both radish and corn leaves. For radish, the lowering of the oxygen concentration from 21% to 2% at these intensities was found to reduce the CO2 compensation point by the same amount for the wavelengths studied.  相似文献   

3.
Measurements of CO2 exchange at varying O2 concentrations in seven grass species of the Laxa group of Panicum and activities of five photosynthetic enzymes were compared to values obtained for these characters in a cool season C3 grass, tall fescue (Festuca arundinacea Schreb.) and a C4 grass, P. maximum Jacq. Plants were divided into three groups on the basis of the inhibition of apparent photosynthesis by 21% O2. Rates of apparent photosynthesis in P. prionitis Griseb. and P. maximum were virtually unaffected by changes in O2 concentration. In another group consisting of P. hylaeicum Mez., P. rivulare Trin., P. laxum Sw., and tall fescue apparent photosynthesis was inhibited by 28.2 to 36.0% at 21% O2. An intermediate inhibition of 20.6 to 23.3% at 21% O2 was exhibited by P. milioides Nees ex Trin., P. schenckii Hack., and P. decipiens Nees ex Trin. The CO2 compensation concentration for P. prionitis and P. maximum was low (≤6 microliters per liter CO2 at 21% O2) and affected little by O2, whereas values for P. hylaeicum, P. rivulare, P. laxum, and tall fescue were much greater, and increased almost linearly from 2 to 48% O2. Values for P. milioides, P. schenckii, and P. decipiens were intermediate to the other two groups. The effect of O2 on total leaf conductance to CO2 was similar to the C3 grasses and the intermediate Panicums. However, estimates of photorespiration in the intermediate species were low and changed little with O2 in comparison to estimates for the C3 species which were higher and increased greatly with increased O2.  相似文献   

4.
The weedy species Parthenium hysterophorus (Asteraceae) possesses a Kranz-like leaf anatomy. The bundle sheath cells are thick-walled and contain numerous granal chloroplasts, prominent mitochondria, and peroxisomes, all largely arranged in a centripetal position. Both mesophyll and bundle sheath chloroplasts accumulate starch. P. hysterophorus exhibits reduced photorespiration as indicated by a moderately low CO2 compensation concentration (20-25 microliters per liter at 30°C and 21% O2) and by a reduced sensitivity of net photosynthesis to 21% O2. In contrast, the related C3 species P. incanum and P. argentatum (guayule) lack Kranz anatomy, have higher CO2 compensation concentrations (about 55 microliters per liter), and show a greater inhibition of photosynthesis by 21% O2. Furthermore, in P. hysterophorus the CO2 compensation concentration is relatively less sensitive to changes in O2 concentrations and shows a biphasic response to changing O2, with a transition point at about 11% O2. Based on these results, P. hysterophorus is classified as a C3-C4 intermediate. The activities of diagnostic enzymes of C4 photosynthesis in P. hysterophorus were very low, comparable to those observed in the C3 species P. incanum (e.g. phosphoenolpyruvate carboxylase activity of 10-29 micromoles per milligram of chlorophyll per hour). Exposures of leaves of each species to 14CO2 (for 8 seconds) in the light resulted in 3-phosphoglycerate and sugar phosphates being the predominant initial 14C products (77-84%), with ≤4% of the 14C-label in malate plus aspartate. These results indicate that in the C3-C4 intermediate P. hysterophorus, the reduction in leaf photorespiration cannot be attributed to C4 photosynthesis.  相似文献   

5.
The effect of 21% O2 and 3% O2 on the CO2 exchange of detached wheat leaves was measured in a closed system with an infrared carbon dioxide analyzer. Temperature was varied between 2° and 43°, CO2 concentration between 0.000% and 0.050% and light intensity between 40 ft-c and 1000 ft-c. In most conditions, the apparent rate of photosynthesis was inhibited in 21% O2 compared to 3% O2. The degree of inhibition increased with increasing temperature and decreasing CO2 concentration. Light intensity did not alter the effect of O2 except at light intensities or CO2 concentrations near the compensation point. At high CO2 concentrations and low temperature, O2 inhibition of apparent photosynthesis was absent. At 3% O2, wheat resembled tropical grasses in possessing a high rate of photosynthesis, a temperature optimum for photosynthesis above 30°, and a CO2 compensation point of less than 0.0005% CO2. The effect of O2 on apparent photosynthesis could be ascribed to a combination of stimulation of CO2 production during photosynthesis, and inhibition of photosynthesis itself.  相似文献   

6.
Two naturally occurring species of the genus Alternanthera, namely A. ficoides and A. tenella, were identified as C3-C4 intermediates based on leaf anatomy, photosynthetic CO2 compensation point (Γ), O2 response of г, light intensity response of г, and the activities of key enzymes of photosynthesis. A. ficoides and A. tenella exhibited a less distinct Kranz-like leaf anatomy with substantial accumulation of starch both in mesophyll and bundle sheath cells. Photosynthetic CO2 compensation points of these two intermediate species at 29°C were much lower than in C3 plants and ranged from 18 to 22 microliters per liter. Although A. ficoides and A. tenella exhibited similar intermediacy in г, the apparent photorespiratory component of O2 inhibition in A. ficoides is lower than in A. tenella. The г progressively decreases from 35 microliters per liter at lowest light intensity to 18 microliters per liter at highest light intensity in A. tenella. It was, however, constant in A. ficoides at 20 to 25 microliters per liter between light intensities measured. The rates of net photosynthesis at 21% O2 and 29°C by A. ficoides and A. tenella were 25 to 28 milligrams CO2 per square decimeter per hour which are intermediate between values obtained for Tridax procumbens and A. pungens, C3 and C4 species, respectively. The activities of key enzymes of C4 photosynthesis, phosphoenolpyruvate carboxylase, pyruvate Pi dikinase, NAD malic enzyme, NADP malic enzyme and phosphoenolpyruvate carboxykinase in the two intermediates, A. ficoides and A. tenella are very low or insignificant. Results indicated that the relatively low apparent photorespiratory component in these two species is presumably the basis for the C3-C4 intermediate photosynthesis.  相似文献   

7.
Intraspecific measurements of photorespiration   总被引:3,自引:3,他引:0       下载免费PDF全文
The relative magnitudes of (a) CO2 compensation concentration, (b) zero CO2 intercept of the CO2 response curve, (c) O2 suppression of net photosynthesis, (d) differential 12CO2 and 14CO2 uptake, and (e) 14CO2 efflux into CO2-free air were determined in the dry bean (Phaseolus vulgaris L.) varieties Michelite-62 (M-62) and Red Kidney (RK). In comparing the two varieties for each of the above processes, there were three categories of response, M-62 > RK, M-62 = RK, and M-62 < RK. Since these processes did not give the same relative difference for the two varieties being studied, it was concluded that these phenomena cannot validly be used to estimate the magnitude of photorespiration, although they do identify its presence. The results suggest that photorespiration is but one component of O2 inhibition of net photosynthesis and that photorespiration itself has two or more component metabolic pathways.  相似文献   

8.
Photosynthetic and photorespiratory characteristics of flaveria species   总被引:2,自引:2,他引:0  
Ku MS  Wu J  Dai Z  Scott RA  Chu C  Edwards GE 《Plant physiology》1991,96(2):518-528
The genus Flaveria shows evidence of evolution in the mechanism of photosynthesis as its 21 species include C3, C3-C4, C4-like, and C4 plants. In this study, several physiological and biochemical parameters of photosynthesis and photorespiration were measured in 18 Flaveria species representing all the photosynthetic types. The 10 species classified as C3-C4 intermediates showed an inverse continuum in level of photorespiration and development of the C4 syndrome. This ranges from F. sonorensis with relatively high apparent photorespiration and lacking C4 photosynthesis to F. Among the intermediates, the photosynthetic CO2 compensation points at 30°C and 1150 micromoles quanta per square meter per second varied from 9 to 29 microbars. The values for the three C4-like species varied from 3 to 6 microbars, similar to those measured for the C4 species. The activities of the photorespiratory enzymes glycolate oxidase, hydroxypyruvate reductase, and serine hydroxymethyltransferase decreased progressively from C3 to C3-C4 to C4-like and C4 species. On the other hand, most intermediates had higher levels of phosphenolpyruvate carboxylase and NADP-malic enzyme than C3 species, but generally lower activities compared to C4-like and C4 species. The levels of these C4 enzymes are correlated with the degree of C4 photosynthesis, based on the initial products of photosynthesis. Another indication of development of the C4 syndrome in C3-C4 Flaveria species was their intermediate chlorophyll a/b ratios. The chlorophyll a/b ratios of the various Flaveria species are highly correlated with the degree of C4 photosynthesis suggesting that the photochemical machinery is progressively altered during evolution in order to meet the specific energy requirements for operating the C4 pathway. In the progression from C3 to C4 species in Flaveria, the CO2 compensation point decreased more rapidly than did the decrease in O2 inhibition of photosynthesis or the increase in the degree of C4 photosynthesis. These results suggest that the reduction in photorespiration during evolution occurred initially by refixation of photorespired CO2 and prior to substantive reduction in O2 inhibition and development of the C4 syndrome. However, further reduction in O2 inhibition in some intermediates and C4-like species is considered primarily due to the development of the C4 syndrome. Thus, the evolution of C3-C4 intermediate photosynthesis likely occurred in response to environmental conditions which limit the intercellular CO2 concentration first via refixation of photorespired CO2, followed by development of the C4 syndrome.  相似文献   

9.
Species in the Laxa group of Panicum have C3 or C3/C4 photosynthesis based on leaf anatomical and CO2 exchange characteristics. Hybrids were previously made between C3/C4 and C3 species in this group (RH Brown et al. 1985 Plant Physiol 77: 653-658). In this paper, CO2 exchange, morphological, and leaf anatomical characteristics of F2 or F5 progeny from colchicine-induced amphiploids of C3/C4 × C3 hybrids (Panicum milioides Nees ex Trin. [C3/C4] × Panicum laxum Mez [C3] and Panicum spathellosum Doell [C3/C4] × Panicum boliviense Hack. [C3]) were studied.

There were no differences found in morphology or physiology between the amphiploids and the F1 hybrids from which they were produced. In the segregating progeny, CO2 compensation concentration and photorespiration values typical of C3, but not of C3/C4 plants, were recovered. Progeny were found from both crosses which possessed O2 inhibition of apparent photosynthesis typical of the parents, and in the case of the P. milioides × P. laxum cross, leaf anatomy and overall plant morphology typical of the parents were observed in some progeny. The progeny were found to possess recombinations of various traits associated with reduced photorespiration, so that no correlation existed among O2 inhibition of apparent photosynthesis, CO2 compensation concentration, and leaf anatomical traits. One plant was especially noteworthy in possessing leaf anatomy typical of C3/C4 plants, but with CO2 exchange characteristics of C3 plants.

  相似文献   

10.
The Laxa group of the Panicum genus contains species which have CO2 exchange and anatomical characteristics intermediate to C3 and C4 photosynthetic types (C3/C4), and also species characterized as C3. Hybrids were made between two of the C3/C4 species and two C3 species. Carbon dioxide exchange and morphological, leaf anatomical, and cytogenetic characteristics of F1 hybrids between Panicum milioides Nees. ex Trin (C3/C4) and P. laxum Mez. (C3), P. spathellosum Doell (C3/C4) and P. boliviense Hack. (C3), and P. spathellosum and P. laxum were studied. There were no consistent differences in apparent photosynthesis, although two of the three hybrids had higher net CO2 uptake than the C3 parent. Values of inhibition of apparent photosynthesis by 21% O2, CO2 loss in the light, and CO2 compensation concentration for the hybrids were between those of the parents. All three hybrids showed leaf anatomical traits, especially organelle quantities in the bundle sheath cells, between those of their respective parents. Linear regression of CO2 compensation concentration on the percentage of mitochondria and chloroplasts in vascular bundle sheaths of the parents and hybrids gave correlation coefficients of −0.94. This suggests that the reduction in CO2 loss in the C3/C4 species, and to a lesser degree in the F1 hybrids, was due to development of organelles and perhaps a higher proportion of leaf photorespiration in bundle sheaths. The overall morphology of the hybrids was so different from the parents that they could be described as new taxonomic forms. The chromosomes in the hybrids were mainly unpaired or paired as bivalents indicating possible homology between some parental genomes.  相似文献   

11.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

12.
Transfer of C4 photosynthetic traits was studied through hybridization of Flaveria trinervia (Spreng.) Mohr (C4) and Flaveria brownii A.M. Powell (C4-like) with Flaveria linearis Lag. (C3-C4) and the C3 species Flaveria pringlei Gandoger (C3). Fertility was low, based on irregular chromosome pairing and low pollen stainability, except in F. brownii × F. linearis which had bivalent pairing and 76% stainable pollen. Hybrids had apparent photosynthesis values of 71 to 148% of the midparental means, while the CO2 compensation concentration was similar to the C4 or C4-like parent, except in hybrids having the C3 species F. pringlei as a parent. Inhibition of apparent photosynthesis by O2, and phosphoenolpyruvate carboxylase and NADP-malic enzyme activities and subunit levels in the hybrids were closer to the C3 or C3-C4 parent. The species F. brownii and F. trinervia were equal in their capacity to transfer reduced O2 inhibition of AP and CO2 compensation concentration values to hybrids with F. linearis (C3-C4), although hybrids with F. trinervia had higher PEPC activity. The O2 inhibition of AP was correlated with the logarithm of activities of phosphoenolpyruvate carboxylase (r = −0.95) and NADP-malic enzyme (r = −0.87). These results confirm that C4 traits can be transferred by hybridization of C3-C4 and C4 or C4-like species, with a higher degree of C4 photosynthesis than exists in C3-C4 species, and at least in F. brownii × F. linearis, fertile progeny are obtained.  相似文献   

13.
The response of apparent photosynthesis to N nutrition was studied in the C3 grass, tall fescue (Festuca arundinacea Schreb.), in the C4 species Panicum maximum Jacq., and in Panicum milioides Nees ex Trin., a species with characteristics intermediate between C3 and C4 photosynthetic types. Plants were grown in culture solution containing 1, 5, 50, and 200 milligrams N per liter. Apparent photosynthesis was measured on the youngest fully expanded leaves at 320 microliters of CO2 per liter of air and 21% O2. Leaf conductance was calculated from transpiration measurements, and CO2 compensation concentrations were also estimated. Several leaf anatomical characteristics were studied on plastic-embedded material. Leaf N content was determined on leaves which were used in photosynthesis measurements.  相似文献   

14.
Harris FS  Martin CE 《Plant physiology》1991,96(4):1118-1124
Photosynthetic gas exchange and malic acid fluctuations were monitored in 69 well-watered plants from five morphologically similar species of Talinum in an investigation of the ecophysiological significance of the Crassulacean acid metabolism (CAM)-cycling mode of photosynthesis. Unlike CAM, atmospheric CO2 uptake in CAM-cycling occurs exclusively during the day; at night, the stomata are closed and respiratory CO2 is recaptured to form malic acid. All species showed similar patterns of day-night gas exchange and overnight malic acid accumulation, confirming the presence of CAM-cycling. Species averages for gas exchange parameters and malic acid fluctuation were significantly different such that the species with the highest daytime gas exchange had the lowest malic acid accumulation and vice versa. Also, daytime CO2 exchange and transpiration were negatively correlated with overnight malic acid fluctuation for all individuals examined together, as well as within one species. This suggests that malic acid may effect reductions in both atmospheric CO2 uptake and transpiration during the day. No significant correlation between malic acid fluctuation and water-use efficiency was found, although a nonsignificant trend of increasing water-use efficiency with increasing malic acid fluctuation was observed among species averages. This study provides evidence that CO2 recycling via malic acid is negatively correlated with daytime transpirational water losses in well-watered plants. Thus, CAM-cycling could be important for survival in the thin, frequently desiccated soils of rock outcrops on which these plants occur.  相似文献   

15.
Photosynthesis in Eurasian Watermilfoil (Myriophyllum spicatum L.)   总被引:5,自引:4,他引:1       下载免费PDF全文
Gas exchange of Eurasian watermilfoil (Myriophyllum spicatum L.) indicated a near-zero CO2 compensation point and a high temperature optimum for photosynthesis. These properties are characteristic of plants fixing CO2 by a β-carboxylation mechanism. Operation of the Calvin cycle was shown and no evidence for β-carboxylation was obtained. These results indicate that near-zero CO2 compensation points are not dependent on a β-carboxylation mechanism.  相似文献   

16.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

17.
The rate of dark CO2 efflux from mature wheat (Triticum aestivum cv Gabo) leaves at the end of the night is less than that found after a period of photosynthesis. After photosynthesis, the dark CO2 efflux shows complex dependence on time and temperature. For about 30 minutes after darkening, CO2 efflux includes a large component which can be abolished by transferring illuminated leaves to 3% O2 and 330 microbar CO2 before darkening. After 30 minutes of darkness, a relatively steady rate of CO2 efflux was obtained. The temperature dependence of steady-state dark CO2 efflux at the end of the night differs from that after a period of photosynthesis. The higher rate of dark CO2 efflux following photosynthesis is correlated with accumulated net CO2 assimilation and with an increase in several carbohydrate fractions in the leaf. It is also correlated with an increase in the CO2 compensation point in 21% O2, and an increase in the light compensation point. The interactions between CO2 efflux from carbohydrate oxidation and photorespiration are discussed. It is concluded that the rate of CO2 efflux by respiration is comparable in darkened and illuminated wheat leaves.  相似文献   

18.
The effect of O2 on the CO2 exchange of detached leaves of corn (Zea mays), wheat (Triticum vulgare), oats (Avena sativa), barley (Hordeum vulgare), timothy (Phleum pratense) and cat-tail (Typha angustifolia) was measured with a Clark oxygen electrode and infrared carbon dioxide analysers in both open and closed systems.

Corn leaves did not produce CO2 in the light at any O2 concentration, as was shown by the zero CO2 compensation point and the absence of a CO2 burst in the first minute of darkness. The rate of photosynthesis was inhibited by O2 and the inhibition was not completely reversible. On the other hand, the steady rate of respiration after a few minutes in the dark was not affected by O2.

These results were interpreted as indicating the absence of any measurable respiration during photosynthesis. Twelve different varieties of corn studied all responded to O2 in the same way.

The other 5 monocotyledons studied did produce CO2 in the light. Moreover, the CO2 compensation point increased linearly with O2 indicating a stimulation of photorespiration.

The implications of the lack of photorespiration in studies of primary productivity are discussed.

  相似文献   

19.
Brown RH 《Plant physiology》1980,65(2):346-349
Reduced photorespiration has been reported in Panicum milioides on the basis of lower CO2 compensation concentrations than in C3 species, lower CO2 evolution in the light, and less response of apparent photosynthesis to O2 concentration. The lower response to O2 in P. milioides could be due to reduced O2 competition with CO2 for reaction with ribulose 1,5-bisphosphate, to a reduced loss of CO2, or to an initial fixation of CO2 by phosphoenolpyruvate carboxylase. Experiments were carried out with Panicum maximum Jacq., a C4 species having no apparent photorespiration; tall fescue (Festuca arundinacea Schreb.), a C3 species; P. milioides Nees ex Trin.; and Panicum schenckii Hack. The latter two species are closely related and have low photorespiration rates. CO2 exchange was measured at five CO2 concentrations ranging from 0 to 260 microliters per liter at both 2 and 21% O2. Mesophyll conductance or carboxylation efficiency was estimated by plotting substomatal CO2 concentrations against apparent photosynthesis. In the C4 species P. maximum, mesophyll conductance was 0.96 centimeters per second and was unaffected by O2 concentration. At 21% O2 mesophyll conductance of tall fescue was decreased 32% below the value at 2% O2. Decreases in mesophyll conductance at 21% O2 for P. milioides and P. schenckii were similar to that for tall fescue. On the other hand, loss of CO2 in CO2-free air, estimated by extrapolating the CO2 response curve to zero CO2, was increased from 1.8 to 6.5 milligrams per square decimeter per hour in tall fescue as O2 was raised from 2-21%. Loss of CO2 was less than 1 milligram per square decimeter per hour for P. milioides and P. schenckii and was unaffected by O2. The results suggest that the reduced O2 response in P. milioides and P. schenckii is due to a lower loss of CO2 in the light rather than less inhibition of carboxylation by O2, since the decrease in carboxylation efficiency at 21% O2 was similar for P. milioides, P. schenckii, and tall fescue. The inhibition of apparent photosynthesis by 21% O2 in these three species at low light intensities was similar at 31 to 36% which also indicates similar O2 effects on carboxylation. Apparent photosynthesis at high light intensity was inhibited less by 21% O2 in P. milioides (16.8%) and P. schenckii (23.8%) than in tall fescue (28.4%). This lower inhibition in the Panicum species may have been due to a higher degree of recycling of photorespired CO2 in these species than in tall fescue.  相似文献   

20.
The extent of photorespiration, the inhibition of apparent photosynthesis (APS) by 21% O2, and the leaf anatomical and ultrastructural features of the naturally occurring C3–C4 intermediate species in the diverse Panicum, Moricandia, and Flaveria genera are between those features of representative C3 and C4 plants. The greatest differences between the photosynthetic/photorespiratory CO2 exchange characteristics of the C3–C4 intermediates and C3 plants occur for the parameters which are measured at low pCO2 (i.e., the CO2 compensation concentration and rates of CO2 evolution into CO2-free air in the light). The rates of APS by the intermediate species at atmospheric pCO2 are similar to those of C3 plants.The mechanisms which are responsible for reducing photorespiration in the C3–C4 intermediate species are poorly understood, but two proposals have been advanced. One emphasizes the importance of limited C4 photosynthesis which reduces O2 fixation by ribulose 1,5-bisphosphate carboxylase/oxygenase, and, thus, reduces photorespiration by a CO2-concentrating mechanism, while the other emphasizes the importance of the internal recycling of photorespiratory CO2 evolved from the chloroplast/mitochondrion-containing bundle-sheath cells. There is no evidence from recent studies that limited C4 photosynthesis is responsible for reducing photorespiration in the intermediate Panicum and Moricandia species. However, preliminary results suggest that some, but not all, of the intermediate Flaveria species may possess a limited C4 cycle. The importance of a chlorophyllous bundle-sheath layer in the leaves of intermediate Panicum and Moricandia species in a mechanism based on the recycling of photorespiratory CO2 is uncertain.Therefore, although they have yet to be clearly delineated, different strategies appear to exist in the C3–C4 intermediate group to reduce photorespiration. Of major importance is the finding that some mechanism(s) other than Crassulacean acid metabolism or C4 photosynthesis has (have) evolved in at least the majority of these terrestrial intermediate species to reduce the seemingly wasteful metabolic process of photorespiration.Abbreviations APS apparent (net) photosynthesis - CAM Crassulacean acid metabolism - CE carboxylation efficiency - T CO2 compensation concentration - IRGA infrared gas analysis - Pi orthophosphate - PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate Published as Paper No. 7383, Journal Series, Nebraska Agricultural Experiment Station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号