首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of hepatocytes with either NH4Cl (10mM) or fructose (10mM) blocks insulin's activation of the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of insulin (10 nM) to decrease intracellular cyclic AMP concentrations raised by glucagon (10 nM) was unaffected by pre-treatment with either NH4Cl (10 mM) or fructose (10 mM). It is concluded that the 'dense-vesicle' enzyme does not play a significant role in this action of insulin and that as yet unidentified cyclic AMP phosphodiesterase(s) must be activated by insulin. Treatment of hepatocytes with either NH4Cl or fructose appeared to increase, reversibly, cyclic AMP phosphodiesterase activity. When N6-(phenylisopropyl)adenosine was used to prevent glucagon from blocking insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase activity, insulin's ability to decrease intracellular cyclic AMP concentrations in glucagon-treated hepatocytes was increased markedly. Insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase activity can exert a potent effect in decreasing intracellular cyclic AMP concentrations elevated by glucagon.  相似文献   

2.
The cyclic nucleotide phosphodiesterase (EC 3.4.16) activities of a rat liver particulate fraction were analyzed after solubilization by detergent or by freeze-thawing. Analysis of the two extracts by DEAE-cellulose chromatography revealed that they contain different complements of phosphodiesterase activities. The detergent-solubilized extract contained a cyclic GMP phosphodiesterase, a low affinity cyclic nucleotide phosphodiesterase whose hydrolysis of cyclic AMP was activated by cyclic GMP and a high affinity cyclic AMP phosphodiesterase. The freeze-thaw extract contained a cyclic GMP phosphodiesterase and two high affinity cyclic AMP phosphodiesterase, but no low affinity cyclic nucleotide phosphodiesterase. The cyclic AMP phosphodiesterase activities from the freeze-thaw extract and from the detergent extract all had negatively cooperative kinetics. One of the cyclic AMP phosphodiesterases from the freeze-thaw extract (form A) was insensitive to inhibition by cyclic GMP; the other freeze-thaw solubilized cyclic AMP phosphodiesterase (form B) and the detergent-solubilized cyclic AMP phosphodiesterase were strongly inhibited by cyclic GMP. The B enzyme appeared to be converted into the A enzyme when the particulate fraction was stored for prolonged periods at -20 degrees C. The B form was purified extensively, using DEAE-cellulose, a guanine-Sepharose column and gel filtration. The enzyme retained its negatively cooperative kinetics and high affinity for both cyclic AMP and cyclic GMP throughout the purification, although catalytic activity was always much greater for cyclic AMP. Rabbit antiserum was raised against the purified B enzyme and tested via a precipitin reaction against other forms of phosphodiesterase. The antiserum cross-reacted with the A enzyme and the detergent-solubilized cyclic AMP phosphodiesterase from rat liver. It did not react with the calmodulin-activated cyclic GMP phosphodiesterase of rat brain, the soluble low affinity cyclic nucleotide phosphodiesterase of rat liver or a commercial phosphodiesterase preparation from bovine heart. These results suggest a possible interrelationship between the high affinity cyclic nucleotide phosphodiesterase of rat liver.  相似文献   

3.
We have examined the activity of cyclic AMP phosphodiesterase, cyclic GMP phosphodiesterase and the protein activator of cyclic AMP phosphodiesterase in various anatomic and subcellular fractions of the bovine eye. Cyclic GMP hydrolysis was 1.6--12 times faster than hydrolysis of cyclic AMP in the subcellular fractions of the retina and in the precipitate of the rod outer segment. An opposite pattern was seen in the bovine lens, where the hyrolysis of cyclic AMP occurred 17 and 169 times faster than that of cyclic GMP in the supernatant and precipitate of lens, respectively. The activity of cyclic AMP phosphodiesterase was not affected by ethylene-glycol bis(beta-aminoethylether)-N,N'-tetraacetic acid in any fractions except in the retinal supernatant, suggesting that the phosphodiesterase exists primarily as a Ca2+-independent, activator-independent form. However, the protein activator of cyclic AMP phosphodiesterase existed in all fractions examine. A complex kinetic patternwas observed for both cyclic AMP and cyllic GMP hydrolysis by the 105000 times g lens supernatant. The Michaelis constants for both cyclic AMP (1.3-10(-6) and 9.I-10(-6) M) and cyclic GMP (1.04-10(6) AND 1.22 10(-5) M) appeared to be similar.  相似文献   

4.
F Irvine  N J Pyne  M D Houslay 《FEBS letters》1986,208(2):455-459
Treatment of intact hepatocytes with the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) potentiated the ability of glucagon to increase intracellular cyclic AMP concentrations. This effect was dose-dependent upon TPA, exhibiting an EC50 of 0.39 ng/ml and such activation was observed at both saturating and sub-saturating concentrations of glucagon. However, this stimulatory effect of TPA was completely abolished by the presence of the cyclic AMP phosphodiesterase inhibitor 1-isobutyl-3-methylxanthine, when TPA now inhibited the glucagon-stimulated increase in intracellular cyclic AMP concentrations. It is suggested that, as well as inhibiting glucagon-stimulated adenylate cyclase activity, TPA also inhibits cyclic AMP phosphodiesterase activity in intact hepatocytes. Treatment of either hepatocyte homogenates or purified cyclic AMP phosphodiesterase with TPA failed to show any direct inhibitory effect of TPA on activity showing that TPA did not exert any direct inhibitory action on phosphodiesterase activity. However, homogenates made from hepatocytes that had been pre-treated with TPA did show a reduced cyclic AMP phosphodiesterase activity. It is suggested that TPA might inhibit cyclic AMP phosphodiesterase activity through phosphorylation by C-kinase.  相似文献   

5.
The effect of diamide (diazene dicarboxylic acid bis[N,N'-dimethylamide) on cyclic AMP levels and cyclic nucleotide phosphodiesterase in human peripheral blood lymphocytes was examined. In the absence of mitogenic lectins, 5 . 10(-3)-1 . 10(-4) M diamide markedly increased intracellular cyclic AMP with variable effects at higher levels. In the presence of phytohemagglutinin or concanavalin A, 5 . 10(-4) M or higher diamide concentrations consistently decreased cyclic AMP levels, usually to control levels or below, while 1 . 10(-4)-1 . 10(-5) M diamide augmented the lectin-induced rise in cyclic AMP. When intact lymphocytes were incubated with diamide, phosphodiesterase activity against both cyclic AMP and cyclic GMP, assayed in homogenates of these cells, was inhibited at concentrations as low as 1 . 10(-6) M. In contrast, when diamide was incubated with phosphodiesterase extracted from lymphocytes there was a dual effect. At low substrate concentrations and high diamide concentrations diamide was a non-competitive inhibitor of phosphodiesterase with a Ki of 1.3--2.5 mM for cyclic AMP and 3.3--10 mM for cyclic GMP. In contrast, at high substrate concentrations diamide was an 'uncompetitive' activator of phosphodiesterase activity for both cyclic AMP and cyclic GMP. The effects of diamide could be largely or completely blocked by glutathione or dithiothreitol, indicating that sulfhydryl reactivity was involved in diamide's action on lymphocyte phosphodiesterase activity and intracellular cyclic AMP levels. These data demonstrate that diamide is a phosphodiesterase inhibitor both on phosphodiesterase extracted from lymphocytes and when incubated with intact lymphocytes and that diamide may increase or decrease intracellular cyclic AMP levels depending on the concentration of diamide used.  相似文献   

6.
Treatment of intact adipocytes with either or both insulin and adrenaline stimulated membrane cyclic AMP phosphodiesterase activity only in the endoplasmic reticulum subfraction. The cyclic GMP-inhibited cyclic AMP phosphodiesterase activity was also found in this fraction. Quantitative Western blotting using a specific polyclonal antibody, raised against the homogeneous 'dense-vesicle' cyclic AMP phosphodiesterase from rat liver, identified a single 63 kDa species which was localized in the adipocyte endoplasmic reticulum fraction. The ability of adrenaline to stimulate adipocyte membrane cyclic AMP phosphodiesterase was shown to be mediated via beta-adrenoceptors and not alpha 1-adrenoceptors. Membrane cyclic AMP phosphodiesterase was stimulated by glucagon but not by vasopressin, A23187 or 12-O-tetradecanoylphorbol 13-acetate (TPA). Treatment of adipocytes with either chloroquine or dansyl cadaverine failed to affect the ability of insulin to stimulate cyclic AMP phosphodiesterase activity. Treatment of an isolated adipocyte endoplasmic reticulum membrane fraction with purified protein kinase A increased its cyclic AMP phosphodiesterase activity some 2-fold. When this fraction was treated with purified protein kinase A and [32P]ATP, label was incorporated into a 63 kDa protein which was specifically immunoprecipitated with the antiserum against the liver 'dense-vesicle' cyclic AMP phosphodiesterase.  相似文献   

7.
An insulin mediator preparation was obtained from rat hepatocytes which had been treated with insulin. This preparation inhibited adenylate cyclase activity. It stimulated the activity of homogeneous preparations of both the cytosolic and membrane-bound forms of rat liver cyclic GMP-activated cyclic AMP phosphodiesterase. It failed to activate homogeneous preparations of both the peripheral plasma membrane and 'dense-vesicle' cyclic AMP phosphodiesterases. The insulin mediator preparation stimulated cyclic GMP-activated cyclic AMP phosphodiesterase activity in a dose-dependent fashion with a hill coefficient of 0.46. Insulin caused the dose-dependent production of mediator activity in intact hepatocytes with a Ka of 9 pM, although concentrations of insulin greater than 10 nM progressively reduced stimulatory activity.  相似文献   

8.
Extracts of vegetative cells of Blastocladiella emersonii contain 5% or less of the cyclic AMP phosphodiesterase activity in zoospore extracts. This difference in activity could be accounted for entirely by an increase in the differential rate of phosphodiesterase synthesis during sporulation, beginning after a lag period of about 60 min and extending for at least an additional 90 min into the 4-h sporulation process. To examine the relation between enzyme synthesis and cyclic nucleotide metabolicm, we determined the substrate specificity of phosphodiesterase synthesized during sporulation and partially purified from zoospores. Zoospore extracts contain two components, separable by gel filtration chromatography, with cyclic AMP phosphodiesterase activity. The larger component accounts for 20% of the total activity and the smaller component for 80%. Both components show essentially an absolute substrate specificity for cyclic AMP among several cyclic purine and cyclic pyrimidine nucleotides tested. Nevertheless, we found no change in the total cyclic AMP content of sporulating cells before, during, or after enzyme activity increased. We speculate that some other component of cyclic AMP metabolism or function limits the rate of cyclic AMP hydrolysis in sporulating cells.  相似文献   

9.
BHK fibroblasts contain two forms of cyclic AMP phosphodiesterase 3':5'-cyclic nucleotide 5'-nucleotidohydrolase EC 3.1.4.17) as analyzed by linear sucrose gradient fractionation; a 3.6-S form (peak I) and a 6.7-S form (peak II). Peak I is specific for cyclic AMP as substrate and displays Michaelis-Menten kinetics with an apparent Km of 2--3 micrometer. Peak II hydrolyzes cyclic GMP and displays anomalous kinetics for cyclic AMP hydrolysis. The activity of isolated peak II for cyclic AMP is increased by storage at 4 degrees C, treatment with trypsin, or treatment with rat brain and BHK fibroblast activator proteins. The activity of isolated peak I is unaffected by these conditions. Linear sucrose gradient fractionation demonstrates that activation of peak II by trypsin leads to the formation of a 3.6-S cyclic AMP-specific enzyme form, possibly peak I. In contrast to BHK fibroblasts (and most other mammalian tissues), rat uterus contains only one form of cyclic nucleotide phosphodiesterase on linear sucrose gradients, a 7-S form capable of hydrolyzing both cyclic AMP and cyclic GMP. Treatment of rat uterine supernatant with trypsin leads to the appearance of a 4-S, cyclic AMP-specific form with properties similar to that of BHK peak I. These data suggest that the kinetically complex, higher molecular weight cyclic nucleotide phosphodiesterases may consist of more than one catalytically active site and that multiple forms of the enzyme arise through dissociative mechanisms, possibly as a means of in vivo regulation.  相似文献   

10.
Two cyclic nucleotide phosphodiesterase activities were separated by ion-exchange chromatography of cytosol from male mouse germ cells. A form eluted at low salt concentration showed high affinity (Km congruent to 2 microM) and low affinity (Km congruent to 20 microM) for cyclic AMP, and high affinity (Km congruent to 3.5 microM) for cyclic GMP. A second form, eluted at high salt concentration, showed high affinity (Km congruent to 5 microM) for cyclic AMP and was similar to a phosphodiesterase activity described in rat germ cells. The present study was performed to characterize the first form, which represents most of the phosphodiesterase activity in mouse germ cells. The enzyme was sensitive to Ca2+ and calmodulin stimulation, which increased its activity 3-4-fold. Calmodulin stimulation depended on direct interaction of the activator with the enzyme, as indicated by the reversible changes in the chromatographic elution pattern in the presence of Ca2+, as well as by the increase in the sedimentation coefficient in the presence of calmodulin. Reciprocal inhibition kinetics between cyclic AMP and cyclic GMP for the calmodulin-dependent form demonstrated a non-competitive inhibition between the two substrates, suggesting the presence of separate catalytic sites. This is in agreement with kinetic parameters and different thermal stabilities of cyclic AMP- and cyclic GMP-hydrolysing activities. Furthermore, the relevant change in s value, depending on the absence or presence of Ca2+ and calmodulin, suggested that the enzyme is composed of subunits, which aggregate in the presence of the activator. A model for catalytic site composition and reciprocal interaction is also proposed.  相似文献   

11.
Fat cells were isolated from sedentary and exercise trained female Sprague-Dawley rats and cyclic AMP phosphodiesterase (cyclic AMP-PDE) activities were determined from crude homogenates of the fat cells in the whole homogenate, P5, P48, and S48 fractions. Exercise training resulted in a significant increase in the mean specific activity of cyclic AMP-PDE (pmol X min-1 X mg-1) from the whole homogenate and S48 fraction at cyclic AMP concentrations of 4, 8, and 16 microM and in the P48 fraction at 8 and 16 microM cyclic AMP. Cyclic AMP-PDE kinetic plots according to Lineweaver-Burk for the calculation of Michaelis constants (Km) and maximum enzyme velocities (Vmax) were nonlinear, indicating both a low and high enzyme form. The Michaelis constants were significantly lower in trained rats than those of its control for the high Km form of cyclic AMP-PDE in the whole and soluble fractions and for the low Km form of the P5 particulate fraction. The Vmax of the high Km form of the P48 particulate fraction from trained animals was also significantly higher than that found in its control. Phosphodiesterase inhibition by methylxanthines in the various fractions was similar in both trained and sedentary animals. These changes in specific activity, Michaelis constants, and Vmax of cyclic AMP-PDE from crude homogenates of isolated fat cells from exercise trained animals may account for the decreased intracellular levels of cyclic AMP following catecholamine stimulation of isolated fat cells from trained rats.  相似文献   

12.
Cyclic nucleotide phosphodiesterase activities (3',5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) were found in the 40,000 X g supernatant fraction of homogenates of Xenopus laevis oocytes. In the supernatant, the ratio of the specific activity of cyclic AMP phosphodiesterase to that of cyclic GMP phosphodiesterase was 1.1 at the 1 micro substrate level. Two phosphodiesterase forms were isolated by centrifugation on sucrose gradient: a 3-4 S form hydrolyzing specificity cyclic AMP and a 6-7 S form hydrolyzing both cyclic nucleotides (cyclic AMP and cyclic GMP). The activity of the 6-7 S phosphodiesterase was characterized by its activation by 0.1 micro M calmodulin purified from beef pancreas in the presence of 50 micro M CA2+. The calmodulin dependence of this form was completely abolished in the presence of 1 mM ethyleneglycobis(beta-aminoethyl ether)-N-N,N',N'-tetraacetic acid (EGTA). Trifluoperazine at 0.1 mM inhibited both the freshly prepared crude enzyme and the partially purified 6-7 S form. On the other hand, no effect of cyclic GMP at 3 micro M was observed on cyclic AMP hydrolysis in the case of the supernatant or that of the partially purified phosphodiesterases. These data show the presence of a calmodulin-dependent phosphodiesterase in the soluble fraction of X. laevis oocytes.  相似文献   

13.
Treatment of intact hepatocytes with glucagon led to the rapid desensitization of adenylate cyclase, which reached a maximum around 5 min after application of glucagon, after which resensitization ensued. Complete resensitization occurred some 20 min after the addition of glucagon. In hepatocytes which had been preincubated with the cyclic AMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), glucagon elicited a stable desensitized state where resensitization failed to occur even 20 min after exposure of hepatocytes to glucagon. Treatment with IBMX alone did not elicit desensitization. The action of IBMX in stabilizing the glucagon-mediated desensitized state was mimicked by the non-methylxanthine cyclic AMP phosphodiesterase inhibitor Ro-20-1724 [4-(3-butoxy-4-methoxylbenzyl)-2-imidazolidinone]. IBMX inhibited the resensitization process in a dose-dependent fashion with an EC50 (concn. giving 50% of maximal effect) of 26 +/- 5 microM, which was similar to the EC50 value of 22 +/- 6 microM observed for the ability of IBMX to augment the glucagon-stimulated rise in intracellular cyclic AMP concentrations. Pre-treatment of hepatocytes with IBMX did not alter the ability of either angiotensin or the glucagon analogue TH-glucagon, ligands which did not increase intracellular cyclic AMP concentrations, to cause the rapid desensitization and subsequent resensitization of adenylate cyclase. It is suggested that, although desensitization of glucagon-stimulated adenylate cyclase is elicited by a cyclic AMP-independent process, the resensitization of adenylate cyclase can be inhibited by a process which is dependent on elevated cyclic AMP concentrations. This action can be detected by attenuating the degradation of cyclic AMP by using inhibitors of cyclic AMP phosphodiesterase.  相似文献   

14.
A low-Km cyclic nucleotide phosphodiesterase solubilised from rat liver membranes by mild proteolysis with chymotrypsin has been purified to apparent homogeneity. The purification included chromatography on cellulose phosphate, Ecteola-cellulose, hydroxyapatite, a theophylline affinity matrix and HPLC on a DEAE-substituted column. The purified enzyme has linear kinetic plots with a Km of 0.24 microM and a Vmax of 6.2 mumol mg-1 min-1 with cyclic AMP as a substrate. It also hydrolyses cyclic GMP with a Km of 0.17 microM and a Vmax which is about a third of that with cyclic AMP. Cyclic GMP is also a competitive inhibitor of cyclic AMP hydrolysis with a Ki of 0.18 microM. The proteolytically solubilised enzyme has a subunit molecular mass of 73 kDa by SDS gel electrophoresis and of 130 kDa by HPLC size-exclusion chromatography, suggesting that it exists as a dimer. A partially purified preparation of this enzyme was used to raise antiserum in a sheep. The antiserum immunoprecipitated activity from liver and adipose tissue of rat and mouse. It had little activity against phosphodiesterase from other rat tissues or other species. Insulin-activated phosphodiesterase from both adipocytes and hepatocytes was immunoprecipitated by the antiserum suggesting that the purified enzyme was an insulin-sensitive phosphodiesterase.  相似文献   

15.
16.
M A Oleshansky 《Life sciences》1980,27(12):1089-1095
Cyclic AMP phosphodiesterase activity in a particulate fraction of rat striatum is stimulated two fold by cyclic GMP. An investigation of the effects of various purine compounds on basal and cyclic GMP-stimulated cyclic AMP phosphodiesterase activity as measured at a low substrate concentration (3 uM) was carried out. Adenosine inhibits cyclic GMP-stimulated cyclic AMP phosphodiesterase activity with an IC50 of 400 uM while inhibiting basal cyclic AMP phosphodiesterase activity with an IC50 of 2.4 mM. Adenosine blocks cyclic GMP stimulation of cyclic AMP hydrolysis with an IC50 of 80 uM. Inosine and hypoxanthine have a similar profile of action but are less effective with IC50's of 200 and 400 uM respectively on cyclic GMP stimulation of phosphodiesterase activity and only 20–40% inhibition of basal enzyme activity up to 2.4 mM. Adenine, guanosine and guanine block cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 100–200 uM. Classical phosphodiesterase inhibitors of the alkylxanthine type are also selective for the stimulated enzyme with IC50's of 200 and 25 uM for theophylline and IBMX on cyclic GMP-stimulated cyclic AMP hydrolysis and IC50's of 500 and 50 uM respectively on basal phosphodiesterase activity. Theophylline and IBMX are potent inhibitors of cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 50 and 5 uM. These findings suggest a role for physiologically available purine compounds and alkylxanthines in the regulation of cyclic nucleotide metabolism through interaction with cyclic GMP stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

17.
The effects of probenecid on the transport and metabolism of cyclic [14C]-AMP were studied in isolated rabbit kidney cortex tubules. Incubation in a medium with 10-400 microM probenecid for 30 min caused a 30-70% decrease in the tubular uptake of labeled material from a medium containing 0.1 mM cyclic [14C]AMP. The radioactivity in the tubules, after 30 min incubation, with or without probenecid, was mostly in the form of inosine and hypoxanthine. The disappearance of external cyclic [14C]AMP was retarded by probenecid and the concentration ratio of cyclic AMP to inosine + hypoxanthine was increased. Cyclic AMP phosphodiesterase activities, from both the soluble and particulate fractions of the kidney, were inhibited by probenecid. These findings indicate that the changes caused by probenecid on the renal disposal of extracellular cyclic AMP can be accounted for by a decrease in the accumulation of the products of cyclic AMP metabolism secondary to inhibition of extracellular cyclic AMP phosphodiesterase activity.  相似文献   

18.
Cyclic nucleotide phosphodiesterase activity in mammary tissue from rats in midlactation was resolved by DEAE-cellulose chromatography into three functionally distinct fractions: a Ca2+/calmodulin-stimulated cyclic GMP phosphodiesterase, a cyclic GMP-stimulated low-affinity cyclic nucleotide phosphodiesterase, and a high-affinity cyclic AMP-specific phosphodiesterase. The absolute activities and relative proportions of high- and low-affinity enzymes resemble those found, for example, in liver, as distinct from those in excitable tissues. Three functional characteristics are described which are peculiar to mammary-tissue phosphodiesterases. Firstly, the concentration of free Ca2+ required to achieve half-maximal activation of the Ca2+/calmodulin-stimulated phosphodiesterase is somewhat higher than for the analogous enzyme in other tissues; secondly, the activity of this enzyme towards cyclic AMP relative to that towards cyclic GMP is unusually low, and thirdly, the low-affinity cyclic nucleotide phosphodiesterase is inhibited by low concentrations of free Ca2+.  相似文献   

19.
A high-speed supernatant of rat liver extract displayed multiple forms of cyclic nucleotide phosphodiesterase (EC 3.1.4.17). One of the forms catalyzed the hydrolysis of cyclic AMP and cyclic GMP, with approximately comparable facility. One salient feature of the enzyme is that at micromolar concentrations, cyclic GMP stimulated the hydrolysis of cyclic AMP, but not vice versa. Another is that the activity of phosphodiesterase varied as a function of enzyme concentration in the assayed system: the enzyme activity was higher at low than at high enzyme concentrations. A concentrated enzyme was not stimulated by cyclic GMP but was stimulated by cyclic GMP upon dilution of the enzyme. Conversely, stimulation of the enzyme by cyclic GMP could be reversed by increasing the enzyme concentration. The cyclic GMP-stimulated cyclic AMP phosphodiesterase was partially purified by a continuous sucrose density gradient. The apparent change of phosphodiesterase activity as a function of enzyme concentration was also observed after partial purification by the sucrose density gradient. High enzyme concentrations favored the aggregated form of phosphodiesterase, whereas low concentrations favored the dissociated form. Dilution of the enzyme shifted the equilibrium toward the dissociated form, which presumably exposed the cyclic GMP regulatory site on the enzyme molecule.  相似文献   

20.
The ability of nine phospholipids to alter the activity of low-Km cyclic AMP phosphodiesterase was examined in microsomal fractions of rat adipocytes. The enzyme was activated by phosphatidylserine (21% at 300 microM) and phosphatidylglycerol (36% at 300 microM). The activation was concentration dependent over the range 1-1000 microM. Six other phospholipids were without effect. Phosphatidylinositol 4-phosphate inhibited the activity of the enzyme over the same range of concentrations (26% at 300 microM). Phosphatidylserine also activated a partially purified preparation of the enzyme, whereas phosphatidylinositol 4-phosphate was ineffective. The mechanism of the activation of the enzyme by phosphatidylserine and phosphatidylglycerol involved an increase in the apparent Vmax of the enzyme, while the inhibition by phosphatidylinositol 4-phosphate was associated with an increase in the Km of the enzyme for substrate. The phospholipid modulators of low-Km cyclic AMP phosphodiesterase activity did not alter the activity of high-Km cyclic AMP phosphodiesterase. The ability of phospholipids to alter the activity of low-Km cyclic AMP phosphodiesterase in native membranes suggests a possible role for phospholipids in metabolic regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号