首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two laccase isozymes (I and II) produced by the white-rot fungus Trametes versicolor were purified, and their reactivities towards various substrates and lignins were studied. The N-terminal amino acid sequences of these enzymes were determined and compared to other known laccase sequences. Laccase II showed a very high sequence similarity to a laccase which was previously reported to depolymerize lignin. The reactivities of the two isozymes on most of the substrates tested were similar, but there were some differences in the oxidation rate of polymeric substrates. We found that the two laccases produced similar qualitative effects on kraft lignin and residual lignin in kraft pulp, with no evidence of a marked preference for depolymerization by either enzyme. However, the presence of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) prevented and reversed the polymerization of kraft lignin by either laccase. The delignification of hardwood and softwood kraft pulps with the two isozymes and the mediator was compared; either laccase was able to reduce the kappa number of pulp, but only in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate).  相似文献   

2.
This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.  相似文献   

3.
The fungus Trametes versicolor can delignify and brighten kraft pulps. To better understand the mechanism of this biological bleaching and the by-products formed, I traced the transformation of pulp lignin during treatment with the fungus. Hardwood and softwood kraft pulps containing 14C-labelled residual lignin were prepared by laboratory pulping of lignin-labelled aspen and spruce wood and then incubated with T. versicolor. After initially polymerizing the lignin, the fungus depolymerized it to alkali-extractable forms and then to soluble forms. Most of the labelled carbon accumulated in the water-soluble pool. The extractable and soluble products were oligomeric; single-ring aromatic products were not detected. The mineralization of the lignin carbon to CO2 varied between experiments, up to 22% in the most vigorous cultures. The activities of the known enzymes laccase and manganese peroxidase did not account for all of the lignin degradation that took place in the T. versicolor cultures. This fungus may produce additional enzymes that could be useful in enzyme bleaching systems.  相似文献   

4.
The ability of 10 dikaryotic and 20 monokaryotic strains of Trametes (Coriolus) versicolor to bleach and delignify hardwood and softwood kraft pulps was assessed. A dikaryon (52P) and two of its mating-compatible monokaryons (52J and 52D) derived via protoplasting were compared. All three regularly bleached hardwood kraft pulp more than 20 brightness points (International Standards Organization) in 5 days and softwood kraft pulp the same amount in 12 days. Delignification (kappa number reduction) by the dikaryon and the monokaryons was similar, but the growth of the monokaryons was slower. Insoluble dark pigments were commonly found in the mycelium, medium, and pulp of the dikaryon only. Laccase and manganese peroxidase (MnP) but not lignin peroxidase activities were secreted during bleaching by all three strains. Their laccase and MnP isozyme patterns were compared on native gels. No segregation of isozyme bands between the monokaryons was found. Hardwood kraft pulp appeared to adsorb several laccase isozyme bands. One MnP isozyme (pI, 3.2) was secreted in the presence of pulp by all three strains, but a second (pI, 4.9) was produced only by 52P. A lower level of soluble MnP activity in one monokaryon (52D) was associated with reduced bleaching ability and a lower level of methanol production. Since monokaryon 52J bleached pulp better than its parent dikaryon 52P, especially per unit of biomass, this genetically simpler monokaryon will be the preferred subject for further genetic manipulation and improvement of fungal pulp biological bleaching.  相似文献   

5.
By comparing the ultrastructural features of two oxygen delignified hardwood kraft pulps (Eucalyptus urograndis and Betula verrucosa), we have demonstrated a marked difference in their residual lignin properties. In this study, properties such as crystallinity and crystal size of cellulose, molecular weights, carboxyl group contents, and carbohydrate compositions of the two kraft pulps were compared. The examined pulps were in our observations relatively similar. A significant difference, however, was observed in the size exclusion chromatography measurements, which indirectly suggested that a significant portion of residual lignin in eucalyptus pulp was associated with cellulose. Birch pulp, in contrast, exhibited a more conventional tendency for hardwood pulps: lignin mainly associated with hemicelluloses.  相似文献   

6.
Residual lignin studies of laccase-delignified kraft pulps   总被引:9,自引:0,他引:9  
The delignification of chemical pulps with laccase and -hydroxybenzotriazole was explored employing a pre- and post-O2 delignified softwood draft pulp. The delignification properties of laccase were shown to be improved with -hydroxybenzotriazole was used as a mediator instead of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). Analysis of the structure of residual lignin before and after laccase/ -hydroxybenzotriazole treatment indicated that the biobleaching system oxidizes the phenolic component of lignin and that the residual lignin is demethylated and significantly enriched in carboxylic acid groups.  相似文献   

7.
The discovery in 1983 of fungal lignin peroxidases able to catalyze the oxidation of nonphenolic aromatic lignin model compounds and release some CO2 from lignin has been seen as a major advance in understanding how fungi degrade lignin. Recently, the fungus Trametes versicolor was shown to be capable of substantial decolorization and delignification of unbleached industrial kraft pulps over 2 to 5 days. The role, if any, of lignin peroxidase in this biobleaching was therefore examined. Several different assays indicated that T. versicolor can produce and secrete peroxidase proteins, but only under certain culture conditions. However, work employing a new lignin peroxidase inhibitor (metavanadate ions) and a new lignin peroxidase assay using the dye azure B indicated that secreted lignin peroxidases do not play a role in the T. versicolor pulp-bleaching system. Oxidative activity capable of degrading 2-keto-4-methiolbutyric acid (KMB) appeared unique to ligninolytic fungi and always accompanied pulp biobleaching.  相似文献   

8.
Biological bleaching of kraft pulps by white-rot fungi and their enzymes   总被引:9,自引:0,他引:9  
Abstract: The use of white-rot fungi, especially Trametes versicolor and isolate IZU-154, to delignify and brighten kraft pulps is reviewed. The fungal treatments are effective but slow; the responsible enzymes are being studied with a view to accelerating the process. Manganese peroxidase, or laccase with a co-substrate, can demethylate and partially solubilize the lignin in pulps, mimicking the early steps of the fungal delignification.  相似文献   

9.
The white-rot fungus Coriolus versicolor increased the brightness of hardwood kraft pulp by two mechanisms depending on the concentration of available nitrogen. In low-nitrogen conditions, the brightening process was a chemical effect mediated by the fungus, associated with the removal of residual lignin in the pulp; kappa number was used as an indicator of lignin concentration. A five-day treatment in low-nitrogen conditions increased the brightness of hardwood kraft pulp from 36.2 to 54.5%, with a corresponding decrease in kappa number from 12.0 to 8.5, equivalent to a reduction in the lignin concentration from ca. 2.0% (wt/wt) to ca. 1.4% (wt/wt). Under these conditions, we concluded that the brightening of the pulp was a secondary metabolic event initiated after the depletion of available nitrogen. This method of brightening has been described as bleaching or biobleaching. By contrast, in high-nitrogen conditions, the brightening was a physical effect associated with the dilution of the dark pulp fibers by the relatively high levels of brighter fungal mycelium produced. Since this method of brightening was not evidently associated with lignin removal, it cannot be described as bleaching. In pulp samples brightened in high-nitrogen conditions, as brightness increased, there was a corresponding increase in kappa number. This observation was explained by the consumption of potassium permanganate by the fungal mycelium, which interfered with kappa number determinations at high fungal biomass levels.  相似文献   

10.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase–HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase–HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols–filipin signals were almost completely absent.  相似文献   

11.
Two Streptomyces strains, S. viridosporus T7A and S. setonii 75Vi2, were grown on softwood, hardwood, and grass lignocelluloses, and lignocellulose decomposition was followed by monitoring substrate weight loss, lignin loss, and carbohydrate loss over time. Results showed that both Streptomyces strains substantially degraded both the lignin and the carbohydrate components of each lignocellulose; however, these actinomycetes were more efficient decomposers of grass lignocelluloses than of hardwood or softwood lignocelluloses. In particular, these Streptomyces strains were more efficient decomposers of grass lignins than of hardwood or softwood lignins.  相似文献   

12.
In vitro bleaching of an unbleached hardwood kraft pulp was performed with manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624. When the kraft pulp was treated with partially purified MnP in the presence of MnSO4, Tween 80, and sodium malonate with continuous addition of H2O2 at 37°C for 24 h, the pulp brightness increased by about 10 points and the kappa number decreased by about 6 points compared with untreated pulp. The pulp brightness was also increased by 43 points to 75.5% by multiple (six) treatments with MnP combined with alkaline extraction. Our results indicate that in vitro degradation of residual lignin in hardwood kraft pulp with MnP is possible.  相似文献   

13.
Enzyme-aided bleaching of softwood and hardwood kraft pulps by glycosyl hydrolase family-10 and -11 xylanases and a family-26 mannanase was investigated. The ability to release reducing sugar from pulp xylan and to enhance bleachability is not a characteristic shared by all xylanases. Of the six enzymes tested, two xylanases belonging to family 11 were most effective at increasing bleachability and improving final paper brightness. None of the enzymes had a deleterious effect on pulp fibre integrity. The efficiency of individual xylanases as bleach enhancers was not dependent on the source microorganism, and could not be predicted solely on the basis of the quantity or nature of products released from pulp xylan. Cooperative interactions between xylanase/xylanase and xylanase/mannanase combinations, during the pretreatment of softwood and hardwood pulps, were investigated. Synergistic effects on reducing-sugar release and kappa number reduction were elicited by a combination of two family-10 xylanases. Pretreatment of kraft pulp with mannanase A from Pseudomonas fluorescens subsp. cellulosa and any one of a number of xylanases resulted in increased release of reducing sugar and a larger reduction in kappa number than obtained with the xylanases alone, confirming the beneficial effects of family-26 mannanases on enzyme-aided bleaching of paper pulp. Received: 6 January 1997 / Received revision: 10 April 1997 / Accepted: 19 April 1997  相似文献   

14.
The white rot basidiomycete Trametes (Coriolus) versicolor can substantially increase the brightness and decrease the lignin content of washed, unbleached hardwood kraft pulp (HWKP). Monokaryotic strain 52J was used to study how HWKP and the lignin in HWKP affect the carbon metabolism and secretions of T. versicolor. Earlier work indicated that a biobleaching culture supernatant contained all components necessary for HWKP biobleaching and delignification, but the supernatant needed frequent contact with the fungus to maintain these activities. Thus, labile small fungal metabolites may be the vital biobleaching system components renewed or replaced by the fungus. Nearly all of the CO2 evolved by HWKP-containing cultures came from the added glucose, indicating that HWKP is not an important source of carbon or energy during biobleaching. Carbon dioxide appeared somewhat earlier in the absence of HWKP, but the culture partial O2 pressure was little affected by the presence of pulp. The presence of HWKP in a culture markedly increased the culture's production of a number of acidic metabolites, including 2-phenyllactate, oxalate, adipate, glyoxylate, fumarate, mandelate, and glycolate. Although the total concentration of these pulp-induced metabolites was only 4.3 mM, these compounds functioned as effective manganese-complexing agents for the manganese peroxidase-mediated oxidation of phenol red, propelling the reaction at 2.4 times the rate of 50 mM sodium malonate, the standard chelator-buffer. The presence of HWKP in a culture also markedly stimulated fungal secretion of the enzymes manganese peroxidase, cellulase, and cellobiose-quinone oxidoreductase, but not laccase (phenol oxidase) or lignin peroxidase.  相似文献   

15.
Summary Improving the availability of oxygen by adding polydimethylsiloxanes (PDMS) oxygen carriers to Trametes versicolor cultures increased pulp brightening. The presence of the oxygen carriers in cultures of T. versicolor with hardwood kraft pulp increased the growth rate of the fungus, but not the ultimate biomass yield. The PDMS also stimulated brightening of hardwood kraft pulp by it T. versicolor immobilized in polyurethane foam. A threefold increase in the oxygen uptake rate in T. versicolor cultures with PDMS was observed. This increase can be explained by elevated oxygen transfer rate and attributed to the surfactant properties of PDMS. Offprint requests to: E. ZiomekIssued as NRCC 32760  相似文献   

16.
Summary Bleaching of hardwood kraft pulp by Trametes versicolor was accompanied by release and accumulation of methanol, which was produced by demethylation of the pulp. A partial demethylation of the pulp was observed with isolated laccase I from T. versicolor. The extent of demethylation by laccase was increased to the level released by the fungus by addition of 2,2-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). Methanol release by the laccase/ABTS combination was followed by slower kappa reduction. Both methanol release and kappa reduction were dependent on laccase and ABTS concentrations. The fungus did not produce a stable equivalent of ABTS during bleaching, because extracellular culture fluid from bleaching cultures gave only the same methanol release from pulp as laccase I. Pulp viscosity, an indicator of cellulose chain length, was decreased only slightly by laccase. Thus the enzyme in the presence of ABTS, unlike the fungus, specifically attacks lignin.Offprint requests to: R. Bourbonnais  相似文献   

17.
Summary Culture conditions affecting lignin degradation of an unbleached hardwood kraft pulp by Phanerochaete chrysosporium have been examined. Optimum pH and temperature for lignin degradation (about 33%) were 3.5 and 38°C, respectively. Optimum fungal growth was at a pH of 4.5 and a temperature of around 32°C. Addition of exogeneous glucose to the cultures lessened the degradation of pulp carbohydrates. Lignin degradation was stimulated by oxygen atmosphere and non-agitated cultures. Increased surface to volume ratio (decreased culture depth) enhanced lignin degradation (about 56% at a depth of 1.2 cm). Finally, the correlations: pulp yield vs. residual glucose, ligninase activity vs. mycelium, and extent of delignification vs. residual extracellular H2O2 were discussed in light of recent findings of ligninases responsible for ligninolysis.  相似文献   

18.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase-HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase-HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols-filipin signals were almost completely absent.  相似文献   

19.
Chemical and morphological changes of incipient to advanced stages of palo podrido, an extensively delignified wood, and other types of white rot decay found in the temperate forests of southern Chile were investigated. Palo podrido is a general term for white rot decay that is either selective or nonselective for the removal of lignin, whereas palo blanco describes the white decayed wood that has advanced stages of delignification. Selective delignification occurs mainly in trunks of Eucryphia cordifolia and Nothofagus dombeyi, which have the lowest lignin content and whose lignins have the largest amount of β-aryl ether bonds and the highest syringyl/guaiacyl ratio of all the native woods included in this study. A Ganoderma species was the main white rot fungus associated with the decay. The structural changes in lignin during the white rot degradation were examined by thioacidolysis, which revealed that the β-aryl ether-linked syringyl units were more specifically degraded than the guaiacyl ones, particularly in the case of selective delignification. Ultrastructural studies showed that the delignification process was diffuse throughout the cell wall. Lignin was first removed from the secondary wall nearest the lumen and then throughout the secondary wall toward the middle lamella. The middle lamella and cell corners were the last areas to be degraded. Black manganese deposits were found in some, but not all, selectively delignified samples. In advanced stages of delignification, almost pure cellulose could be found, although with a reduced degree of polymerization. Cellulolytic enzymes appeared to be responsible for depolymerization. A high brightness and an easy refining capacity were found in an unbleached pulp made from selectively delignified N. dombeyi wood. Its low viscosity, however, resulted in poor resistance properties of the pulp. The last stage of degradation (i.e., decomposition of cellulose-rich secondary wall layers) resulted in a gelatinlike substance. Ultrastructural and chemical analyses of this substance showed the matrix to have no microfibrillar structure characteristic of woody cell walls but to still be rich in glucan.  相似文献   

20.
ABacillus sp (V1-4) was isolated from hardwood kraft pulp. It was capable of growing in diluted kraft black liquor at pH 11.5 and produced 49 IU (mol xylose min–1 ml–1) of xylanase when cultivated in alkaline medium at pH 9. Maximal enzyme activity was obtained by cultivation in a defined alkaline medium with 2% birchwood xylan and 1% corn steep liquor at pH 9, but high enzyme production was also obtained on wheat bran. The apparent pH optimum of the enzyme varied with the pH used for cultivation and the buffer system employed for enzyme assay. With cultivation at pH 10 and assays performed in glycine buffer, maximal activity was observed at pH 8.5; with phosphate buffer, maximal activity was between pH 6 and 7. The xylanase temperature optimum (at pH 7.0) was 55°C. In the absence of substrate, at pH 9.0, the enzyme was stable at 50°C for at least 30 min. Elecrophoretic analysis of the crude preparation showed one predominant xylanase with an alkaline pl. Biobleaching studies showed that the enzyme would brighten both hardwood and softwood kraft pulp and release chromophores at pH 7 and 9. Because kraft pulps are alkaline, this enzyme could be used for prebleaching with minimal pH adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号