首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Feng Y  Kong YY  Wang Y  Qi GR 《Biological chemistry》2001,382(4):655-660
The deviant poly(A) signal of hepatitis B virus (HBV) not only controls the formation of the 3' end of all the viral RNA, but is also crucial for HBV replication. Hence, a cis-releasing hammerhead ribozyme (RzA) targeted to the poly(A) signal region of HBV subtype adr was investigated for its antiviral effects. In vitro, RzA cleaved HBV RNA at its target site up to 70%, while the disabled ribozyme (dRzA), which had a one-base mutation in the catalytic site, did not cleave the target RNA at all. When the ribozymes were cotransfected into HepG2 cells with the HBV genome-containing plasmid p3.6II, the wild-type ribozyme RzA could effectively decrease HBV RNA levels and inhibit HBV replication, whereas its disabled form, dRzA, had much weaker effects, indicating that the active catalytic domain of the hammerhead ribozyme could markedly increase the extent of antisense-mediated inhibition. In addition, there was a gradient of effectiveness: the higher the amount of released ribozyme, the more the reduction in target HBV RNA in cells as well as progeny DNA reduction. These results suggest the possibility of the hammerhead ribozyme RzA to be used for the gene therapy of HBV infection.  相似文献   

3.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

4.
 为探讨锤头型核酶抗丙型肝炎病毒的作用 ,根据HCV 5′NCR及翻译起始区的二级结构 ,设计及合成了 1个锤头型核酶RzA .将其插入pCI neo表达载体的多克隆位点 ,构建了表达RzA的质粒pHCV RzA .采用转基因细胞模型HepG2 970 6细胞 ,评价了pHCV RzA质粒对HCV 5′NCR调控荧光素酶表达的抑制活性 .结果表明 ,在HepG2 970 6细胞中 ,pHCV RzA以序列特异性、剂量依赖性方式抑制荧光素酶基因的表达 ,抑制率达 80 % ,提示核酶有可能作为HCV感染基因治疗的一种有效途径 .  相似文献   

5.
Chronic hepatitis B virus (HBV) infection is a major problem in Asia. Current therapies for chronic hepatitis B have limited efficacy. The successful use of ribozymes for intracellular inhibition of HBV gene expression was recently reported. As an alternative to ribozymes, the use of DNA-containing, phosphorothioate-modified, minimized hammerhead ribozymes (minizymes) to inhibit hepatitis B surface antigen (HBsAg) expression and viral replication was investigated. Such molecules can be synthesized and supplied exogenously. Two conserved sites within the HBsAg open reading frame (ORF) were targeted. PLC/PRF5 cells or 2.2.15 cells were treated with minizymes or antisense oligomers to assess the effects on cell viability, HBsAg expression, and viral DNA production. Treatment with the minizyme, MZPS1, resulted in >80% inhibition of HBsAg expression in PLC/PRF5 cells. MZPS1 had more inhibitory effect than the antisense oligonucletoide target at the same region, whereas the control minizyme had little effect. Another gene-specific minizyme, MZPS2, did not show any effect. Treated cells remained fully viable. Treatment of 2.2.15 cells with MZPS1 also led to decreased HBsAg expression. In addition, a 2.3-fold decrease in viral production was observed. Our data showed that minizymes can inhibit HBV gene expression and may potentially be useful for clinical therapy against chronic HBV infection.  相似文献   

6.
A combinatorial screening method has been used to identify hairpin ribozymes that inhibit hepatitis B virus (HBV) replication in transfected human hepatocellular carcinoma (HCC) cells. A hairpin ribozyme library (5 x 10(5) variants) containing a randomized substrate-binding domain was used to identify accessible target sites within 3.3 kb of full-length in vitro-transcribed HBV pregenomic RNA. Forty potential target sites were found within the HBV pregenomic RNA, and 17 sites conserved in all four subtypes of HBV were chosen for intracellular inhibition experiments. Polymerase II and III promoter expression constructs for corresponding hairpin ribozymes were generated and cotransfected into HCC cells together with a replication-competent dimer of HBV DNA. Four ribozymes inhibited HBV replication by 80, 69, 66, and 49%, respectively, while catalytically inactive mutant forms of these ribozymes affected HBV replication by 36, 28, 0, and 0%. These findings indicate that the inhibitory effects on HBV replication were largely mediated by the catalytic activity of the ribozymes. In conclusion, we have identified catalytically active RNAs by combinatorial screening that mediate intracellular antiviral effects on HBV.  相似文献   

7.
8.
In Phaseolus vulgaris L. (French bean) glutamine synthetase (GS) is encoded by four closely-related genes termed gln-alpha, gln-beta, gln-gamma and gln-delta. We have constructed and characterised in vitro a number of hammerhead ribozymes designed to cleave individual RNAs encoded by these genes. The three ribozymes, termed J1, J2 and J3, were targeted to cleave RNA at the start of the gamma and beta, and the middle of the gamma, GS open reading frames respectively. All three ribozymes successfully discriminated between the four (alpha, beta, gamma and delta) highly homologous sequences, even though the targeted sites of cleavage shared up to 18 out of 22 identical bases with other gene family members. The ribozyme-mediated cleavage reactions were Mg2+ dependent and enhanced at higher temperatures, although the J1 ribozyme retained considerable activity at physiological temperatures. Both J1 and J2 demonstrated a time-dependent cleavage of their targeted GS RNAs, although these two ribozymes differed markedly in their ability to cleave multiple substrate molecules. The rate of cleavage by J1 was found to be reduced in the presence of related GS RNAs and by total leaf poly(A) RNAs. The implications of these results for ribozyme activity in vivo are discussed.  相似文献   

9.
The 3.2-kb hepatitis B virus (HBV) genome encodes a single regulatory protein termed HBx. While multiple functions have been identified for HBx in cell culture, its role in virus replication remains undefined. In the present study, we combined an HBV plasmid-based replication assay with the hydrodynamic tail vein injection model to investigate the function(s) of HBx in vivo. Using a greater-than-unit-length HBV plasmid DNA construct (payw1.2) and a similar construct with a stop codon at position 7 of the HBx open reading frame (payw1.2*7), we showed that HBV replication in transfected HepG2 cells was reduced 65% in the absence of HBx. These plasmids were next introduced into the livers of outbred ICR mice via hydrodynamic tail vein injection. At the peak of virus replication, at 4 days postinjection, intrahepatic markers of HBV replication were reduced 72% to 83% in mice injected with HBx-deficient payw1.2*7 compared to those measured in mice receiving wild-type payw1.2. A second plasmid encoding HBx was able to restore virus replication from payw1.2*7 to wild-type levels. Finally, viremia was monitored over the course of acute virus replication, and at 4 days postinjection, it was reduced by nearly 2 logs in the absence of HBx. These studies establish that the role for HBx in virus replication previously shown in transfected HepG2 cells is also apparent in the mouse liver within the context of acute hepatitis. Importantly, the function of HBx can now be studied in an in vivo setting that more closely approximates the cellular environment for HBV replication.  相似文献   

10.
The nonstructural hepatitis B virus (HBV) protein HBx has an important role in HBV replication and in HBV-associated liver disease. Many activities have been linked to HBx expression; however, the molecular mechanisms underlying many of these activities are unknown. One proposed HBx function is the regulation of cytosolic calcium. We analyzed calcium levels in HepG2 cells that expressed HBx or replicating HBV, and we demonstrated that HBx, expressed in the absence of other HBV proteins or in the context of HBV replication, elevates cytosolic calcium. We linked this elevation of cytosolic calcium to the association of HBx with the mitochondrial permeability transition pore.  相似文献   

11.
12.
Hepatitis B virus (HBV) encodes the regulatory HBx protein, which is required for virus replication, although its specific role(s) in the replication cycle remains under investigation. An immunoprecipitation/mass spectrometry approach was used to identify four novel HBx binding proteins from the cytoplasmic fraction of HBx transgenic mouse livers. One of these HBx binding partners is beta interferon promoter stimulator 1 (IPS-1), an adaptor protein that plays a critical role in mediating retinoic acid-inducible gene I (RIG-I) signaling, which leads to the activation of beta interferon (IFN-β). The HBx-IPS-1 protein interaction was confirmed in plasmid-transfected HepG2 cells by reciprocal coimmunoprecipitation and Western blotting. We hypothesized that HBx might alter IPS-1 function since proteins of hepatitis C virus and hepatitis A virus similarly bind IPS-1 and target it for inactivation. The effect of HBx on IPS-1-mediated IFN-β signaling was tested in transfected 293T and HepG2 cells, and we show that HBx inhibits double-stranded DNA (dsDNA)-mediated IFN-β activation in a dose-dependent manner when expressed either alone or within the context of HBV replication. However, HBx does not inhibit poly(I:C)-activated IFN-β signaling. These results demonstrate that HBx interferes with the RIG-I pathway of innate immunity. Hepatitis B virus now joins hepatitis C virus and hepatitis A virus in targeting the same innate immune response pathway, presumably as a shared strategy to benefit replication of these viruses in the liver.  相似文献   

13.
14.
15.
A multitarget approach is needed for effective gene silencing that combines more than one antiviral strategy. With this in mind, we designed a wild-type (wt) and selectively disabled chimeric mutant (mt) constructs that consisted of small hairpin siRNA joined by a short intracellular cleavable linker to a known hammerhead ribozyme, both targeted against the full-length X RNA of hepatitis B. These chimeric RNAs possessed the ability to cleave the target RNA under in vitro conditions and were efficiently processed at the cleavable site. When this wt chimeric RNA construct was introduced into a liver-specific mammalian cell line, HepG2, along with the HBx substrate encoding DNA, very significant (approximately 70%) intracellular downregulation in the levels of target RNA was observed. When the siRNA portion of this chimeric construct was mutated, keeping the ribozyme (Rz) region unchanged, it caused only approximately 25% intracellular reduction. On the contrary, when only the Rz was made catalytically inactive, about 55% reduction in the target RNA was observed. Construct possessing mt Rz and mt siRNA caused only 10% reduction. This wt chimeric construct also resulted in almost complete knockdown of intracellular HBx protein production, and the mt versions were less effective. The intracellular reduction of target RNA with either wt or mt constructs also interfered with the known functions of HBx protein with varying efficiencies. Thus, in this proof of concept study we show that the levels of the target RNA were reduced potently by the wt chimeric siRNA-Rz construct, which could be modulated with mt versions of the same.  相似文献   

16.
17.
P Crisell  S Thompson    W James 《Nucleic acids research》1993,21(22):5251-5255
Self-cleaving RNAs (ribozymes) can be engineered to cleave target RNAs of choice in a sequence-specific manner (1). Consequently, they could be used to inhibit virus replication or to analyse host gene function in vivo. However, ribozymes that are catalytic in vitro are generally disappointing when analysed in cells unless expressed at high levels relative to their target RNAs (2, 3). Here we provide evidence that this can be overcome by optimizing ribozyme structure using cellular rather than cell-free assays. We show that ribozymes of relatively long flanking complementary regions (FCRs), while poor catalysts in vitro, can produce profound inhibition of HIV replication in cells. By examining a series of ribozymes in which the FCRs vary from 9 to 564 nucleotides, we establish that the optimum length for activity in the cell is > or = 33 nucleotides.  相似文献   

18.
19.
Nuclease resistant ribozymes with high catalytic activity.   总被引:15,自引:1,他引:14       下载免费PDF全文
G Paolella  B S Sproat    A I Lamond 《The EMBO journal》1992,11(5):1913-1919
Hammerhead ribozymes are efficient RNA enzymes characterized by a typical hammerhead secondary structure and a number of conserved bases. Little is known about the role of the ribose-phosphate backbone, although it is obviously important since a DNA molecule with the same base sequence is not a catalyst. Here we describe the synthesis of artificial ribozymes where modified (2'-O-allyl- and 2'-O-methyl-) ribonucleotides substitute for the corresponding ribonucleotides. A systematic analysis of partially substituted polymers identified a minimum set of six non-contiguous positions where insertion of modified ribonucleotides strongly affects catalytic activity. Surprisingly, ribozymes completely substituted except for these six ribonucleotides are still very active. These molecules efficiently cleave in trans target RNAs in a sequence-specific way, but, unlike RNA ribozymes, are very resistant to nuclease degradation and are very stable in serum. These properties make such synthetic polymers potentially useful for in vivo gene expression studies and therapeutic applications.  相似文献   

20.
Kim KH  Seong BL 《The EMBO journal》2003,22(9):2104-2116
Despite its implication in the progression of hepatitis B virus (HBV)-associated liver disease, the pro-apoptotic function of HBx protein remains poorly understood. We show that the expression of HBx leads to hyperactivation of caspase-8 and caspase-3 upon treatment with tumor necrosis factor-alpha (TNF-alpha) or anti-Fas antibody, and this activation is correlated with the sensitivity to apoptosis. We demonstrate cytoplasmic co-localization and direct interaction between HBx and the cellular FLICE inhibitory protein (c-FLIP), a key regulator of the death-inducing signaling complex (DISC). Deletion analysis shows that the death effector domain 1 (DED1) of c-FLIP is important for the observed interaction. Overexpression of c-FLIP rescued the cells from HBx-mediated apoptosis, with both the full-length HBV genome and HBx expression vectors. Moreover, c-FLIP and caspase-8 inhibitor considerably protected cells from HBx-mediated apoptosis. These data suggest that HBx abrogates the apoptosis-inhibitory function of c-FLIP and renders the cell hypersensitive towards the TNF-alpha apoptotic signal even below threshold concentration. This provides a novel mechanism for deregulation of hepatic cell growth in HBV patients and a new target for intervention in HBV-associated liver cancer and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号