首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Humans are unique in their range of environments and in the nature and diversity of their behavioral adaptations. While a variety of local genetic adaptations exist within our species, it seems certain that the same basic genetic endowment produces arctic foraging, tropical horticulture, and desert pastoralism, a constellation that represents a greater range of subsistence behavior than the rest of the Primate Order combined. The behavioral adaptations that explain the immense success of our species are cultural in the sense that they are transmitted among individuals by social learning and have accumulated over generations. Understanding how and when such culturally evolved adaptations arise requires understanding of both the evolution of the psychological mechanisms that underlie human social learning and the evolutionary (population) dynamics of cultural systems.  相似文献   

3.
Concerted evolution is a consequence of processes that convert copies of a gene in a multigene family into the same copy. Here we ask whether this homogenization may be adaptive. Analysis of a modifier of homogenization reveals (1) that the trait is most likely to spread if interactions between deleterious mutations are not strongly synergistic; (2) that selection on the modifier is of the order of the mutation rate, hence the modifier is most likely to be favoured by selection when the species has a large effective population size and/or if the modifier affects many genes simultaneously; and (3) that linkage between the genes in the family, and between these genes and the modifier, makes invasion of the modifier easier, suggesting that selection may favour multigene families being in clustered arrays. It follows from the first conclusion that genes for which mutations may often be dominant or semi-dominant should undergo concerted evolution more commonly than others. By analysis of the mouse knockout database, we show that mutations affecting growth-related genes are more commonly associated with dominant lethality than expected by chance. We predict then that selection will favour homogenization of such genes, and possibly others that are significantly dosage dependent, more often than it favours homogenization in other genes. The first condition is almost the opposite of that required for the maintenance of sexual reproduction according to the mutation-deterministic theory. The analysis here therefore suggests that sexual organisms can simultaneously minimize both the effects of deleterious, strongly synergistically, interacting mutations and those that interact either weakly synergistically, multiplicatively, or antagonistically, assuming the latter class belong to a multicopy gene family. Recombination and an absence of homogenization are efficient in purging deleterious mutations in the former class, homogenization and an absence of recombination are efficient at minimizing the costs imposed by the latter classes.  相似文献   

4.
Genomes of the closely related bacteriophages phiX174 and S13 are 5386 bases long and differ at 114 nucleotides, affecting 28 amino acids. Both parental phages were adapted to laboratory culture conditions in replicate lineages and analysed for nucleotide changes that accumulated experimentally Of the 126 experimental substitutions, 90% encoded amino-acid changes, and 62% of the substitutions occurred in parallel in more than one experimental line. Furthermore, missense changes at 12 of the experimental sites were at residues differing between the parental phages; in ten cases the phiX174 experimental lineages were convergent with the S13 parent, or vice versa, at both the nucleotide and amino-acid levels. Convergence at a site was even obtained in both directions in three cases. These results point to a limited number of pathways taken during evolution in these viruses, and also raise the possibility that much of the amino-acid variation in the natural evolution of these viruses has been selected.  相似文献   

5.
6.
7.
The continuing exploration of the structure-function relationships of polymerases and the use of polymerases as phylogenetic tools complement each other, as seen in the literature for the past year. DNA-dependent RNA-polymerase gene sequences, in particular, have been used both to define functional domains in the protein encoded and recently to explore fundamental questions in evolution.  相似文献   

8.
Colegrave N  Collins S 《Heredity》2008,100(5):464-470
The suggestion that there are characteristics of living organisms that have evolved because they increase the rate of evolution is controversial and difficult to study. In this review, we examine the role that experimental evolution might play in resolving this issue. We focus on three areas in which experimental evolution has been used previously to examine questions of evolvability; the evolution of mutational supply, the evolution of genetic exchange and the evolution of genetic architecture. In each case, we summarize what studies of experimental evolution have told us so far and speculate on where progress might be made in the future. We show that, while experimental evolution has helped us to begin to understand the evolutionary dynamics of traits that affect evolvability, many interesting questions remain to be answered.  相似文献   

9.
Mutual interference among linked genetic sites subject to selection may reduce the level of adaptation. A recent study detected this effect using data on protein sequence evolution and codon usage in Drosophila.  相似文献   

10.
Individual extinctions of abundant and widespread species of marine Protista are abrupt and precede the appearance of new species. New species evolve gradually in marginal marine environments and spread only if a suitable ecological domain is available or if such a domain is made available by the disappearance of its occupant species. Competitive evolution, with its classic processes of genetic drift, adaptation, competition, and survival of the fittest, occurs mainly in marginal environments (and possibly within broadly distributed but rare species). Extinctive evolution, on the other hand, with its processes of sudden extinctions and sudden appearances, absence of competition, absence of “missing links”, and frequent survival of the misfit or the indifferently fit is prevalent in broader environments, and more generally applicable to the paleontological record. The modern biosphere is not necessarily better adapted than its predecessors. Global mass extinction affecting different taxa across a broad spectrum of environments is caused by extraordinary environmental disturbances. A major ecosphere is vacated, which is immediately occupied by surviving misfits. These are replaced, through competitive evolution, by a rapid succession of increasingly better adapted species that can be classified into different genera and higher taxa (“macroevolution”). Equilibrium is largely re-established within a few million years. Competitive and extinctive evolution combine into a unified model of evolution.  相似文献   

11.
12.
Genome evolution and the evolution of exon-shuffling--a review   总被引:17,自引:0,他引:17  
Patthy L 《Gene》1999,238(1):103-114
Recent studies on the genomes of protists, plants, fungi and animals confirm that the increase in genome size and gene number in different eukaryotic lineages is paralleled by a general decrease in genome compactness and an increase in the number and size of introns. It may thus be predicted that exon-shuffling has become increasingly significant with the evolution of larger, less compact genomes. To test the validity of this prediction, we have analyzed the evolutionary distribution of modular proteins that have clearly evolved by intronic recombination. The results of this analysis indicate that modular multidomain proteins produced by exon-shuffling are restricted in their evolutionary distribution. Although such proteins are present in all major groups of metazoa from sponges to chordates, there is practically no evidence for the presence of related modular proteins in other groups of eukaryotes. The biological significance of this difference in the composition of the proteomes of animals, fungi, plants and protists is best appreciated when these modular proteins are classified with respect to their biological function. The majority of these proteins can be assigned to functional categories that are inextricably linked to multicellularity of animals, and are of absolute importance in permitting animals to function in an integrated fashion: constituents of the extracellular matrix, proteases involved in tissue remodelling processes, various proteins of body fluids, membrane-associated proteins mediating cell-cell and cell-matrix interactions, membrane associated receptor proteins regulating cell cell communications, etc. Although some basic types of modular proteins seem to be shared by all major groups of metazoa, there are also groups of modular proteins that appear to be restricted to certain evolutionary lineages. In summary, the results suggest that exon-shuffling acquired major significance at the time of metazoan radiation. It is interesting to note that the rise of exon-shuffling coincides with a spectacular burst of evolutionary creativity: the Big Bang of metazoan radiation. It seems probable that modular protein evolution by exon-shuffling has contributed significantly to this accelerated evolution of metazoa, since it facilitated the rapid construction of multidomain extracellular and cell surface proteins that are indispensable for multicellularity.  相似文献   

13.
《Current biology : CB》2022,32(20):4547
  相似文献   

14.
15.
16.
17.
18.
19.
By combining elements of protein engineering and directed evolution, researchers open the door to creating enzymes with diverse catalytic functions in a protein scaffold of their choice.  相似文献   

20.
《Current biology : CB》2020,30(19):R1158-R1163
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号