首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A broad Chromosome (Chr) 10 region of the Dahl salt-sensitive (S) rat was shown by linkage and the use of congenic strains to contain a blood pressure (BP) quantitative trait locus (QTL). To further narrow down the region harboring the QTL, four congenic strains carrying smaller segments were made by replacing various segments of the S rats with the homologous segments of the Lewis (LEW) rats. The construction of these congenic strains was facilitated by a genome-wide marker screening. One congenic strain, assigned as S.L4, showed a BP-lowering effect, and the region harboring a BP QTL, designated QTL1, is localized to a segment of about 15 cM. Two other strains, assigned as S.L2 and S.L5, contained an overlapping segment, and both showed a BP-lowering effect. In contrast, the fourth congenic strain, assigned as S.L1, contained a smaller and shared fragment with S.L2 and S.L5, but it did not have a BP-lowering effect. Deducing from the segment in common in S.L2 and S.L5, and not shared between S.L1 and both congenic strains S.L2 and S.L5, the region harboring a QTL, designated as QTL2, was narrowed to about 12 cM. The current work showed the general applicability of the `speed congenic' approach to map and fine-map BP QTL. Received: 1 February 2001 / Accepted: 29 March 2001  相似文献   

2.
Multiple blood pressure (BP) quantitative trait loci (QTLs) are reported on rat chromosome 10 (RNO10). Of these, QTLs detected by contrasting the genome of the hypertensive Dahl salt-sensitive (S) rat with two different relatively normotensive strains, Lewis (LEW) and the Milan normotensive strain (MNS), are reported. Because the deduced QTL regions of both S vs. LEW and S vs. MNS comparisons are within large genomic segments encompassing more than 2 cM, there was a need to further localize these QTLs and determine whether the QTLs are unique to specific strain comparisons. Previously, the S.MNS QTL1 was mapped to less than 2.6 cM as a differential segment between two congenic strains. In this study, multiple congenic strains spanning the projected interval were studied. The BP effect of each strain was interpreted as the net effect of alleles introgressed within that congenic strain. The results suggest that the MNS alleles within the previously proposed differential segment (D10Rat27-D10Rat24) do not independently lower BP of the S rat. However, another congenic strain, S.MNS(10) × 9, containing introgressed MNS alleles that are outside of the previously proposed differential segment is of interest because (1) it demonstrated a BP-lowering effect, (2) it is contained within a single congenic strain and is not based on the observed effect of a differential segment, and, more importantly, (3) it overlaps with the previously identified S.LEW BP QTL region. Identification of the same QTL affecting BP in multiple rat strains will provide further support for the QTL’s involvement and importance in human essential hypertension.  相似文献   

3.
Meng H  Garrett MR  Dene H  Rapp JP 《Genomics》2003,81(2):210-220
A blood pressure (BP) quantitative trait locus (QTL) was previously found on rat chromosome 9 using Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats. A congenic strain, S.R(chr9), constructed by introgressing an R chromosomal segment into the S background, previously proved the existence of a BP QTL in a large 34.2-cM segment of chromosome 9. In the current work congenic substrains were constructed from the progenitor congenic strain, S.R(chr9). BP and heart weight comparisons between these congenic substrains and their S control localized the BP QTL to a 4.6-cM interval. Two solute carrier (Na(+)/H(+) exchanger) genes, Nhe2 and Nhe4, were excluded as candidates based on their map locations. A second iteration of congenic substrains was used to localize the QTL further to a 2.4-cM interval. Another solute carrier (Cl(-)/HCO3- exchanger) gene, Ae3, is in this reduced interval and was sequenced for both S and R strains, but no coding sequence variations were found. Ae3 mRNA was not differentially expressed in the kidney of congenic compared to S rats. Although the identity of the QTL remains unknown its map location has been reduced from an interval of 34.2 to 2.4 cM.  相似文献   

4.
Lee SJ  Liu J  Westcott AM  Vieth JA  DeRaedt SJ  Yang S  Joe B  Cicila GT 《Genetics》2006,174(4):2203-2213
Substitution mapping was used to refine the localization of blood pressure (BP) quantitative trait loci (QTL) within the congenic region of S.R-Edn3 rats located at the q terminus of rat chromosome 3 (RNO3). An F2(SxS.R-Edn3) population (n=173) was screened to identify rats having crossovers within the congenic region of RNO3 and six congenic substrains were developed that carry shorter segments of R-rat-derived RNO3. Five of the six congenic substrains had significantly lower BP compared to the parental S rat. The lack of BP lowering effect demonstrated by the S.R(ET3x5) substrain and the BP lowering effect retained by the S.R(ET3x2) substrain together define the RNO3 BP QTL-containing region as approximately 4.64 Mb. Two nonoverlapping substrains, S.R(ET3x1) and S.R(ET3x6), had significantly lower BP compared to the S strain, indicating the presence of two distinct BP QTL in the RNO3 q terminus. The RNO3 q terminus was fine mapped with newly developed polymorphic markers to characterize the extent of the congenic regions. The two RNO3 BP QTL regions were thus defined as within intervals of 0.05-1.12 and 0.72-1.25 Mb, respectively. Also important was our difficulty in fine mapping and marker placement in this portion of the rat genome (and thus candidate gene identification) using the available genomic data, including the rat genome sequence.  相似文献   

5.
A region on rat Chromosome (Chr) 2 of the Dahl salt-sensitive rat (S) was shown previously to contain a quantitative trait locus (QTL) for blood pressure (BP). This was achieved first by linkage, followed by the use of congenic strains. A congenic strain, designated S.MNS-D2Mit6/Adh, contained a segment of Chr 2 from the Milan Normotensive (MNS) rat in the S genetic background. Since the region containing the QTL was roughly 80 cM in size, a further reduction was needed towards the positional or candidate gene cloning. Currently, two congenic substrains were made from the original strain S.MNS-D2Mit6/Adh. One of these two substrains showed a BP-lowering effect, whereas the other substrain did not. Deducing the segment not shared in the two substrains, the BP QTL has to be present in a chromosome region of roughly 5.7 cM between the marker D2Rat303 and the locus for the neutroendopeptidase gene (Nep). Nep is not included within the segment. This region does not seem to contain any candidate genes well known for the BP control. Thus, the final identification of the QTL will most likely lead to the discovery of a brand new gene for the BP regulation. Received: 14 December 2000 / Accepted: 18 January 2001  相似文献   

6.
There is enough evidence through linkage and substitution mapping to indicate that rat chromosome 1 harbors multiple blood pressure (BP) quantitative trait loci (QTLs). Of these, BP QTL1b was previously reported from our laboratory using congenic strains derived by introgressing normotensive alleles from the LEW rat onto the genetic background of the hypertensive Dahl salt-sensitive (S) rat. The region spanned by QTL1b is quite large (20.92 Mb), thus requiring further mapping with improved resolution so as to facilitate systematic identification of the underlying genetic determinant(s). Using congenic strains containing the LEW rat chromosomal segments on the Dahl salt-sensitive (S) rat background, further iterations of congenic substrains were constructed and characterized. Collective data obtained from this new iteration of congenic substrains provided evidence for further fragmentation of QTL1b with improved resolution. At least two separate genetic determinants of blood pressure underlie QTL1b. These are within 7.40 Mb and 7.31 Mb and are known as the QTL1b1 region and the QTL1b2 region, respectively. A genetic interaction was detected between the two BP QTLs. Interestingly, five of the previously reported differentially expressed genes located within the newly mapped QTL1b1 region remained differentially expressed. The congenic strain S.LEW(D1Mco36-D1Mco101), which harbors the QTL1b1 region alone but not the QTL1b2 region, serves as a genetic tool for further dissection of the QTL1b1 region and validation of Nr2f2 as a positional candidate gene. Overall, this study represents an intermediary yet obligatory progression towards the identification of genetic elements controlling BP. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. E. J. Toland and Y. Saad contributed equally to this work.  相似文献   

7.
8.
A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02–74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats.  相似文献   

9.
The renin locus (Ren) on rat Chromosome (Chr) 13 had previously been shown to cosegregate with blood pressure in crosses involving Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats. In the present work, interval mapping of blood pressure on Chr 13 with a large F2 (S × R), n = 233, population yielded a maximum LOD = 4.2 for linkage to blood pressure, but the quantitative trait locus (QTL) was only poorly localized to a large 35-centiMorgan (cM) segment of Chr 13. In the linkage analysis, the S-rat QTL allele (S) was associated with higher, and the R-rat QTL allele (R) with lower blood pressure, the difference between homozygotes being about 20 mm Hg. A congenic strain was made by introgressing the R-rat Ren allele into the recipient S strain. This congenic strain showed a 24 mm Hg reduction (P = 0.004) in blood pressure compared with S rats for rats fed 2% NaCl diet for 24 days; this difference was confirmed by two other independent tests. Two congenic substrains were derived from the first congenic strain with shorter R Chr 13 segments on the S background. Comparisons among these congenic strains showed that a blood pressure QTL was in the 24-cM chromosomal segment between Syt2 and D13M1Mit108. This segment does not include the renin locus, which is thus excluded from being the gene on rat Chr 13 responsible for genetic differences in blood pressure detected by linkage analysis. Received: 20 December 1996 / Accepted: 7 April 1997  相似文献   

10.
Our purposes were to develop a linkage map for rat Chromosome (Chr) 10, using chromosome-sorted DNA, and to construct congenic strains to localize blood pressure quantitative trait loci (QTL) on Chr 10 with the map. The linkage mapping panel consisted of three F2 populations totaling 418 rats. Thirty-two new and 29 known microsatellite markers were placed on the map, which spanned 88.9 centiMorgans (cM). The average distance between markers was 1.46 cM. No markers were separated by more than 6.8 cM. Four congenic strains were constructed by introgressing various segments of Chr 10 from the Milan normotensive strain (MNS) onto the background of the Dahl salt-sensitive (S) strain. A blood pressure QTL with a strong effect on blood pressure (35–42 mm Hg) when expressed on the S background was localized to a 31-cM region between D10Mco6 and D10Mcol. The region does not include the locus for inducible nitric oxide synthase (Nos2), which had been considered to be a candidate locus for the QTL. Received: 25 September 1996 / Accepted: 9 November 1996  相似文献   

11.
Previously we reported that there is a blood pressure quantitative trait locus (QTL) on rat Chromosome (Chr) 7 seen when comparing Dahl salt-sensitive (S) rats and Dahl salt-resistant (R) rats. Evidence was also presented that this QTL was due to genetic variants in the adrenal steroidogenic enzyme 11beta-hydroxylase ( Cyp11b1). A series of congenic strains supported this contention. In the present work we have constructed a final congenic substrain that retains a blood pressure effect and that has an introgressed congenic segment which includes Cyp11b1 and is < 177 kb in size. None of the other genes in the congenic region (eight known genes) have known biological functions for influencing blood pressure. We believe that we have reached the limit of resolution for congenic analysis of a QTL in a rodent animal model, and we conclude that Cyp11b1 causes the observed QTL on rat Chr 7 in Dahl rats.  相似文献   

12.
Congenic strains continue to be a fundamental resource for dissecting the genetic basis of complex traits. Traditionally, genetic variants (QTLs) that account for phenotypic variation in a panel of congenic strains are sought first by comparing phenotypes for each strain to the host (reference) strain, and then by examining the results to identify a common chromosome segment that provides the best match between genotype and phenotype across the panel. However, this “common-segment” method has significant limitations, including the subjective nature of the genetic model and an inability to deal formally with strain phenotypes that do not fit the model. We propose an alternative that we call “sequential” analysis and that is based on a unique principle of QTL analysis where each strain, corresponding to a single genotype, is tested individually for QTL effects rather than testing the congenic panel collectively for common effects across heterogeneous backgrounds. A minimum spanning tree, based on principles of graph theory, is used to determine the optimal sequence of strain comparisons. For two traits in two panels of congenic strains in mice, we compared results for the sequential method with the common-segment method as well as with two standard methods of QTL analysis, namely, interval mapping and multiple linear regression. The general utility of the sequential method was demonstrated with analysis of five additional traits in congenic panels from mice and rats. Sequential analysis rigorously resolved phenotypic heterogeneity among strains in the congenic panels and found QTLs that other methods failed to detect.  相似文献   

13.
Rat Chromosome 10 (RNO10) harbors Cia5, a non-MHC quantitative trait locus (QTL) that regulates the severity of type II collagen-induced arthritis (CIA) in DAxF344 and DAxBN F2 rats. CIA is an animal model with many features that resemble rheumatoid arthritis. To facilitate analysis of Cia5 independently of the other CIA regulatory loci on other chromosomes, DA recombinant QTL speed congenic rats, DA.F344(Cia5), were generated. These QTL congenic rats have a large chromosomal segment containing Cia5 (interval size < or =80.1 cM) from CIA-resistant F344 rats introgressed into their genome. Phenotypic analyses of these rats for susceptibility and severity of CIA confirmed that Cia5 is an important disease-modifying locus. CIA severity was significantly lower in the Cia5 congenic rats than in DA controls. We also generated DA Cia5 speed sub-congenic rats, DA.F344(Cia5a), which had a smaller segment of the F344 genome, Cia5a, comprising only the distal q-telomeric end (interval size < or = 22.5 cM) of Cia5, introgressed into their genome. DA.F344(Cia5a) sub-congenic rats also exhibited reduced CIA disease severity compared with the parental DA rats. The regulatory effects in both congenic strains were sex influenced. The disease-ameliorating effect of the larger fragment, Cia5, was greater in males than in females, but the effect of the smaller fragment, Cia5a, was greater in females. We also present an improved genetic linkage map covering the Cia5/Cia5a region, which we have integrated with two rat radiation hybrid maps. Comparative homology analysis of this genomic region with mouse and human chromosomes was also undertaken. Regulatory loci for multiple autoimmune/inflammatory diseases in rats (RNO10), mice (MMU11), and humans (HSA17 and HSA5q23-q31) map to chromosomal segments homologous to Cia5 and Cia5a.  相似文献   

14.
Total genome scans of genetically segregating populations derived from spontaneously hypertensive rats (SHR) and other rat models of essential hypertension suggested a presence of quantitative trait loci (QTL) regulating blood pressure on multiple chromosomes, including chromosome 5. The objective of the current study was to test directly a hypothesis that chromosome 5 of the SHR carries a blood pressure regulatory QTL. A new congenic strain was derived by replacing a segment of chromosome 5 in the SHR/Ola between the D5Wox20 and D5Rat63 markers with the corresponding chromosome segment from the normotensive Brown Norway (BN/Crl) rat. Arterial pressures were directly monitored in conscious, unrestrained rats by radiotelemetry. The transfer of a segment of chromosome 5 from the BN strain onto the SHR genetic background was associated with a significant decrease of systolic blood pressure, that was accompanied by amelioration of renal hypertrophy. The heart rates were not significantly different in the SHR compared to SHR chromosome 5 congenic strain. The findings of the current study demonstrate that gene(s) with major effects on blood pressure and renal mass exist in the differential segment of chromosome 5 trapped within the new SHR.BN congenic strain.  相似文献   

15.
Epidemiological studies have consistently found that hypertension is associated with poor cognitive performance. We hypothesize that a putative causal mechanism underlying this association is due to genetic loci affecting both blood pressure and cognition. Consistent with this notion, we reported several blood pressure (BP) quantitative trait loci (QTLs) that co-localized with navigational performance (Nav)-QTLs influencing spatial learning and memory in Dahl rats. The present study investigates a chromosome 2 region harboring BP-f4 and Nav-8 QTLs. We developed two congenic strains, S.R2A and S.R2B introgressing Dahl R-chromosome 2 segments into Dahl S chromosome 2 region spanning BP-f4 and Nav-8 QTLs. Radiotelemetric blood pressure analysis identified only S.R2A congenic rats with lower systolic blood pressure (females: −26.0 mmHg, P = 0.003; males: −30.9 mmHg, P<1×10−5), diastolic blood pressure (females: −21.2 mmHg, P = 0.01; males: −25.7 mmHg, P<1×10−5), and mean arterial pressure (females: −23.9 mmHg, P = 0.004; males: −28.0 mmHg, P<1×10−5) compared with corresponding Dahl S controls, confirming the presence of BP-f4 QTL on rat chromosome 2. The S.R2B congenic segment did not affect blood pressure. Testing of S.R2A, S.R2B, and Dahl S male rats in the Morris water maze (MWM) task revealed significantly decreased spatial navigation performance in S.R2A male congenic rats when compared with Dahl S male controls (P<0.05). The S.R2B congenic segment did not affect performance of the MWM task in males. The S.R2A female rats did not differ in spatial navigation when compared with Dahl S female controls, indicating that the Nav-8 effect on spatial navigation is male-specific. Our results suggest the existence of a single QTL on chromosome 2 176.6–179.9 Mbp region which affects blood pressure in both males and females and cognition solely in males.  相似文献   

16.
Complex traits are under the genetic control of multiple genes, often with weak effects and strong epistatic interactions. We developed two new collections of mouse strains to improve genetic dissection of complex traits. They are derived from several backcrosses of the Mus spretus SEG/Pas or STF/Pas strains on the C57BL/6J background. Each of the 55 interspecific recombinant congenic strains (IRCSs) carries up to eight SEG/Pas chromosomal segments with an average size of 11.7 Mb, totalizing 1.37% of the genome. The complete series covers 39.7% of the SEG/Pas genome. As a complementary resource, six partial or complete interspecific consomic strains were developed and increased genome coverage to 45.6%. To evaluate the usefulness of these strains for QTL mapping, 16 IRCSs were compared with C57BL/6J for seven hematological parameters. Strain 66H, which carries three SEG/Pas chromosomal segments, had lower red blood cell volume and higher platelet count than C57BL/6J. Each chromosomal segment was isolated in a congenic strain to evaluate individual effects. Congenic strains were combined to assess epistasis. Our data show that both traits were controlled by several genes with complex epistatic interactions. IRCSs are therefore useful to unravel QTL with small effects and gene-by-gene interactions.  相似文献   

17.
Duong C  Charron S  Deng Y  Xiao C  Ménard A  Roy J  Deng AY 《Heredity》2007,98(3):165-171
We studied three possible genotypes at 10 well-defined blood pressure (BP) QTLs using congenic rat lines. The central question was whether the hypertensive or normotensive allele is dominant, or whether there is partial dominance. The congenic strains were employed to investigate the BP effects of alleles originating from normotensive rats in the background of hypertensive Dahl salt-sensitive (DSS) rats. The normotensive alleles at eight QTLs were fully dominant over DSS alleles, which we tentatively interpreted as indicating that DSS rats incurred a loss of function at these loci and that the QTLs produced BP-reducing agents. In contrast, the normotensive allele of only one QTL was recessive over its DSS counterpart, implying a gain of function at this QTL or a null allele involved in generating a BP-elevating agent. Only one locus, C17QTL, had alleles exhibiting partial dominance. These estimates of dominance differ considerably from those obtained by QTL analysis in a F2 cross. This disagreement demonstrates the importance of establishing a cause-effect relationship between a QTL and its phenotypic effect via congenic strains. The dominance relationships suggest pertinent strategies for gene identification and pharmaceutical intervention.  相似文献   

18.
S Kato  A Ishii  A Nishi  S Kuriki  T Koide 《Heredity》2014,113(5):416-423
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs.  相似文献   

19.
20.
Cicila GT  Garrett MR  Lee SJ  Liu J  Dene H  Rapp JP 《Genomics》2001,72(1):51-60
It was previously shown using Dahl salt-sensitive (S) and salt-resistant (R) rats that a blood pressure quantitative trait locus (QTL) was present on rat chromosome 7. In the present work, this QTL was localized to a region less than 0.54 cM in size on the linkage map using a series of congenic strains. This region was contained in a single yeast artificial chromosome that was 220 kb long. This small segment still contained the primary candidate locus Cyp11b1 (11beta-hydroxylase), but the adjacent candidate genes Cyp11b2 (aldosterone synthase) and Cyp11b3 were ruled out. It is concluded that 11beta-hydroxylase, through its known genetic variants altering the production of 18-hydroxy-11-deoxy corticosterone, is very likely to account for the blood pressure QTL on chromosome 7 in the Dahl rat model of hypertension. This QTL accounts for about 23 mm Hg under the condition of 2% NaCl diet for 24 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号