首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.  相似文献   

2.
《Plant science》1988,58(1):121-128
A procedure to obtain interspecific and intergeneric hybrids has been developed through culture in vitro of ovules of cruciferous crops using Brassica oleracea as the female plant. A modified medium of Murashige and Skoog supplemented with 10% (v/v) coconut milk, 300 mg/l casein hydrolysate, 0.1 mg/l 1-napthaleneacetic acid (NAA) and 0.1 mg/l kinein were effective for culturing hybrid ovules. All the interspecific and intergeneric hybrids between B. oleracea and Brassica campestris; and between B. oleracea and Raphanus sativus had an intermediate plant morphology in combination with their parental traits. Hybrids of cross combinations between B. oleracea and B. campestris, and between B. olecacea and R. sativus were amphihaploids. This was revealed through chromosome and isozyme analyses.  相似文献   

3.
Xanthomonas genus possesses a low level of β-galactosidase gene expression and is therefore unable to produce xanthan gum in lactose-based media. In this study, we report the emergence of some natural field strains of Xanthomonas citri subsp. citri (Xcc) capable to use lactose as a sole carbon source to produce xanthan gum. From 210 Xcc strains isolated from key lime (C. aurantifolia), 27 showed the capacity to grow on lactose containing medium. Xcc lactose consuming strains demonstrated a good level of xanthan production. Amongst all, NIGEBK37 produced the greatest (14.62 g/l) amount of xanthan gum in experimental laboratory conditions. By evaluating the viscosity of the biopolymer at 25 °C, it was demonstrated that xanthan synthesized by strain NIGEBK37 has the highest viscosity (44,170.66 cP). Our results were indicative for the weakness of a commercial strain of Xanthomonas campestris pv. Campestris DSM1706 (Xcc/DSM1706) to produce xanthan in lactose containing medium.  相似文献   

4.
Brassica juncea (drought susceptible) and B. campestris (drought tolerant) were germinated under simulated water stress created by polyethylene glycol (MW 6000). The two species showed characteristic differences in dry weight, nitrate reductase, aspartate amino transferase, alanine aminotransferase, glutamate dehydrogenase and free proline accumulation in the embryo axis under water stress. Stress resulted in the decreased activities of these enzymes and the decrease was more in B. juncea than in B. campestris. In both species, protein content was higher under stress. In B. juncea, a 12-fold increase in free proline occurred as compared to a 7-fold increase in B. campestris at ?6 atm osmotic potential.  相似文献   

5.
The number of chromosomes in cells of the root meristem of seedlings of wild and cultivated species of Cruciferae plants capable of hybridizing with rapeseed Brassica napus is studied. Only diploid metaphases are observed in seedlings of Brassica juncea, Diplotaxis tenuifolia, and Raphanus raphanistrum. In B. napus and B. cretica roughly 5% of the seedlings are mixoploid. Diploid cells are dominant in the mixoploids, though hypo-and hyperdiploids are also encountered. Nearly 20% of the seedlings of B. campestris and R. sativum are mixoploid, a significant fraction of which contains di-triploid chimeras. In B. nigra less than one-half of the seedlings are truly diploid, the majority of the plants being mixoploid. Seedlings containing preferentially tetraploid and triploid cells are dominant. The biological significance and possible causes of the newly discovered mixoploidy are discussed.  相似文献   

6.
Summary An atrazine-resistant, male-fertile Brassica napus plant was synthesized by fusion of protoplasts from the diploid species B. oleracea and B. campestris. Leaf protoplasts from B. oleracea var. italica carrying the Ogura male-sterile cytoplasm derived from Raphanus sativus were fused with etiolated hypocotyl protoplasts of atrazine-resistant B. campestris. The selection procedure was based on the inability of B. campestris protoplasts to regenerate in the media used, and the reduction of light-induced growth of B. oleracea tissue by atrazine. A somatic hybrid plant that differed in morphology from both B. oleracea and B. campestris was regenerated on medium containing 50 M atrazine. Its chromosome number was 36–38, approximately that of B. napus. Furthermore, nuclear ribosomal DNA from this hybrid was a mixture of both parental rDNAs. Southern blot analyses of chloroplast DNA and an assay involving tetrazolium blue indicated that the hybrid contained atrazine-resistant B. campestris chloroplasts. The hybrid's mitochondrial genome was recombinant, containing fragments unique to each parent, as well as novel fragments carrying putative crossover points. Although the plant was female-sterile, it was successfully used to pollinate B. napus.  相似文献   

7.
A mutant (XT906) of Xanthomonas campestris pv. citri, the causal agent of citrus canker, was induced by insertion of the transposon Tn5tac1 and isolated. This mutant did not grow or elicit canker disease in citrus leaves but was still able to induce a hypersensitive response in a nonhost plant (the common bean). The mutant was also unable to grow on minimal medium containing fructose or glycerol as the sole carbon source. A 2.5-kb fragment of wild-type DNA that complemented the mutant phenotype of XT906 was isolated. Sequence analysis revealed that this DNA fragment encoded a protein of 562 amino acids that shows homology to phosphoglucose isomerase (PGI). Enzyme activity assay confirmed that the encoded protein possesses PGI activity. Analysis of the activity of the promoter of the pgi gene revealed that it was inhibited by growth in complex medium but induced by culture in plant extract. These results demonstrate that PGI is required for pathogenicity of X. campestris pv. citri.  相似文献   

8.
Xanthomonas campestris strains that cause disease in citrus were compared by restriction endonuclease analysis of DNA fragments separated by pulsed-field gel electrophoresis and by DNA reassociation. Strains of X. campestris pv. citrumelo, which cause citrus bacterial spot, were, on average, 88% related to each other by DNA reassociation, although these strains exhibited diverse restriction digest patterns. In contrast, strains of X. campestris pv. citri groups A and B, which cause canker A and canker B, respectively, had relatively homogeneous restriction digest patterns. The groups of strains causing these three different citrus diseases were examined by DNA reassociation and were found to be from 55 to 63% related to one another. Several pathovars of X. campestris, previously shown to cause weakly aggressive symptoms on citrus, ranged from 83 to 90% similar to X. campestris pv. citrumelo by DNA reassociation. The type strain of X. campestris pv. campestris ranged from 30 to 40% similar in DNA reassociation experiments to strains of X. campestris pv. citrumelo and X. campestris pv. citri groups A and B. Whereas DNA reassociation quantified the difference between relatively unrelated groups of bacterial strains, restriction endonuclease analysis distinguished between closely related strains.  相似文献   

9.
Genetic and morphological differentiation of insect populations in relation to the use of different host plants is an important phenomenon that leads to ecological specialization. In this study, we describe variations in morphology, and in ecological and biological parameters of Lipaphis pseudobrassicae (Kaltenbach) clones associated with three host species of Cruciferae, Brassica juncea (L.) var. rai sarson Czern and Cross (brown mustard), Brassica campestris L. var. sarson Prain (yellow mustard), and Rorippa indica (L.) Hiern (wild herb). This study was aimed at obtaining evidence regarding phenotypic differentiation induced by, or associated with, the use of distinct host species. Ten morphological characters, 4 growth parameters and 8 biological functions were investigated in wingless aphids collected from plants of the three host species. Aphids from B. campestris and B. juncea clones were bigger in size, heavier in weight and showed higher growth rates and fecundity than the clones from R. indica. Between the two crop plants, clones from B. juncea showed significantly higher growth rates than the clones from B. campestris. Transfer of L. pseudobrassicae populations from B. campestris to B. juncea and R. indica and vice versa resulted in poor performance. Results indicate that the average phenotype of L. pseudobrassicae individuals inhabiting different host plant species differs as a consequence of the contrasting feeding environments the host species provide.  相似文献   

10.
Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s−1 shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain.  相似文献   

11.
Selecting the explant genotypes is crucial step in in vitro culture and Agrobacterium-mediated transformation system due to its host range specificity. Immature embryos of five winter and three spring wheat (Triticum aestivum L) cultivars were evaluated for tissue culture response in three callus initiation media. MS medium containing 2,4-0 (2 mg ml-1) plus B5 vitamins (MSB5), MS medium containing 2,4-0 (1 mg ml-1) with no vitamins (MS1GC) or MS medium containing picloram (2.2 mg ml-1) and 2,4-0 (0.5 mg ml-1) plus MS vitamins (CM4C) were used for callus initiation. Percentage of callus induction varied widely with the genotype and initiation medium used, with values ranging from 5.7% to 100%. Embryogenic capacity of genotypes was evaluated by number of somatic embryos formed from cultured immature embryos. Bob White (spring) and NE92458 (winter) were equal and most embryogenic; Pronghorn and 2137 (both winter) were the poorest. CM4C medium was found to be the best medium for initiating embryogenic callus among three culture media tested. A standard regeneration procedure was used. The genotypes with the highest regeneration efficiencies were Bob White, Fielder and NE92458, (1.8, 1.4 and 1.6 plantslexplant, respectively).  相似文献   

12.
Application of sewage sludge and fly ash (FA) to soil is gaining practice and has become an alternative to chemical fertilizers in many countries. The present study aimed to assess the potential of fly ash–tannery sludge (TS) mixture in two ratios {4 (TS):1 (FA), denoted as A and 4 (TS):2 (FA) denoted as B} and different amendments were made with soil to study the yield and metal availability and their uptake by Brassica campestris L. (cv. Pusa Jaikisan). Experimental data showed that increase in dry matter yield and oil content of B. campestris was noted in lower amendments of soil with mixture A. However, total chlorophyll content of the leaf increased significantly, whereas carotenoid content showed non-significant increase in all the amendments with mixtures A and B as compared to control. The translocation of most of the tested metals (Pb, Mn, Cd, Ni, and Fe) in the shoot of the plant was found higher except Cr, Cu, and Co. Overall, experimental results showed that mixture A (≥10%) was found to be suitable due to better yield and less accumulation of metal in the seed of B. campestris.  相似文献   

13.
Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. 13C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence.  相似文献   

14.
This study examined the ability of jasmonic acid (JA) to enhance drought tolerance in different Brassica species in terms of physiological parameters, antioxidants defense, and glyoxalase system. Ten-day-old seedlings were exposed to drought (15 % polyethylene glycol, PEG-6000) either alone or in combination with 0.5 mM JA. Drought significantly increased lipoxygenase activity and oxidative stress, levels of malondialdehyde and H2O2. Drought reduced seedling biomass, chlorophyll (chl) content, and leaf relative water content (RWC). Drought increased proline, oxidized ascorbate (DHA) and glutathione disulfide (GSSG) levels. Drought affected different species differently: in B. napus, catalase (CAT) and glyoxalase II (Gly II) activities were decreased, while glutathione-S-transferase (GST) and glutathione peroxidase (GPX) activities were increased in drought-stressed compared to unstressed plants; in B. campestris, activities of glutathione reductase (GR), glyoxalase I (Gly I), GST, and GPX were increased, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), CAT and other enzymes were decreased; in B. juncea, activities of ascorbate peroxidase, GR, GPX, Gly I were increased; Gly II activity was decreased and other enzymes did not change. Spraying drought-stressed seedlings with JA increased GR and Gly I activities in B. napus; increased MDHAR activity in B. campestris; and increased DHAR, GR, GPX, Gly I and Gly II activities in B. juncea. JA improved fresh weight, chl, RWC in all species, dry weight increased only in B. juncea. Brassica juncea had the lowest oxidative stress under drought, indicating its natural drought tolerance capacity. The JA improved drought tolerance of B. juncea to the highest level among studied species.  相似文献   

15.
The efficacy of copper bactericides for control of Xanthomonas campestris pv. vesicatoria in eastern Oklahoma tomato fields was evaluated. Copper bactericides did not provide adequate control, and copper-resistant (Cur) strains of the pathogen were isolated. The Cur genes in these strains were located on a large indigenous plasmid designated pXV10A. The host range of pXV10A was investigated; this plasmid was efficiently transferred into 8 of 11 X. campestris pathovars. However, the transfer of pXV10A to other phytopathogenic genera was not detected. DNA hybridization experiments were performed to characterize the Cur genes on pXV10A. A probe containing subcloned Cur genes from X. campestris pv. vesicatoria E3C5 hybridized to pXV10A; however, a subclone containing Cur genes from P. syringae pv. tomato PT23 failed to hybridize to pXV10A. Further DNA hybridization experiments were performed to compare pXV10A with pXvCu plasmids, a heterogenous group of Cur plasmids present in strains of X. campestris pv. vesicatoria from Florida. These studies indicated that the Cur genes on pXV10A and pXvCu plasmids share nucleotide sequence homology and may have a common origin. Further experiments showed that these plasmids are distinctly different because pXV10A did not contain sequences homologous to IS476, an insertion sequence present on pXvCu plasmids.  相似文献   

16.
Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD) in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc) cells displayed PCD when grown in PCD inducing medium (PIM) containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM) fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA), catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ΔputA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ΔputA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response). These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK). The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ΔputA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.  相似文献   

17.
Isolated root cultures which could be maintained over severalmonths by serial subculture were established from Brassica oleraceavar. italica cv. Green Comet F1. A modified White's medium wasfound to be the best of several salt compositions tested. Theeffects on isolated root growth of the following were also examined;nutritional components, culture vessel type and closure, pHof the medium and auxin type and concentration. Using a mediumdevised for Green Comet, root cultures were established fromsix other B. oleracea, B. napus and B. campestris cultivars. It was possible to regenerate shoots from segments of culturedroots by incubation on agar-solidified media containing cytokininand auxin. The effects on regeneration of various auxins andcytokinins were investigated; the combination of Picloram withKN gave the highest frequency of shoot formation. It was demonstratedthat isolated roots retained their regenerative ability overa period of 5 months in culture. Brassica oleracea var. italica, Brassica napus, Brassica campestris, isolated root culture, shoot regeneration, organ culture  相似文献   

18.
Genetic variation based on isozymes was studied in 43 landraces and cultivars of Brassica campestris from China, 4 cultivars of B. campestris from Sweden and 1 from India, and 5 cultivars of B. oleracea from Sweden and 1 from China (B. alboglabra). A total of 17 isozyme loci was studied, 10 of these were polymorphic in B. campestris and 6 were polymorphic in B. oleracea. The level of heterozygosity seemed to be reduced in the Swedish cultivars compared to the Chinese landraces and cultivars of B. campestris. The level of heterozygosity in B. oleracea was even lower than that in the Swedish cultivars of B. campestris. A phylogeny of the cultivars and landraces of B. campestris showed that the B. campestris var yellow sarson cultivar, originating from India, deviated significantly from the other cultivars of B. campestris. A phylogeny of the cultivars of B. oleracea confirmed the expectations that the cultivar B. alboglabra was not closely related to the cultivated forms of B. oleracea.  相似文献   

19.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.The quality of commercial baker’s yeast (Saccharomyces cerevisiae) is determined by many parameters, including storage stability, osmotolerance, freeze-thaw resistance, rehydration resistance of dried yeast, and color. In view of the primary role of baker’s yeast in dough, fermentative capacity (i.e., the specific rate of carbon dioxide production by yeast upon its introduction into dough) is a particularly important parameter (2).In S. cerevisiae, high sugar concentrations and high specific growth rates trigger alcoholic fermentation, even under fully aerobic conditions (6, 18). Alcoholic fermentation during the industrial production of baker’s yeast is highly undesirable, as it reduces the biomass yield on the carbohydrate feedstock. Industrial baker’s yeast production is therefore performed in aerobic, sugar-limited fed-batch cultures. The conditions in such cultures differ drastically from those in the dough environment, which is anaerobic and with sugars at least initially present in excess (23).Optimization of biomass productivity requires that the specific growth rate and biomass yield in the fed-batch process be as high as possible. In the early stage of the process, the maximum feasible growth rate is dictated by the threshold specific growth rate at which respirofermentative metabolism sets in. In later stages, the specific growth rate is decreased to avoid problems with the limited oxygen transfer and/or cooling capacity of industrial bioreactors (10, 27). The actual growth rate profile during fed-batch cultivation is controlled primarily by the feed rate profile of the carbohydrate feedstock (4, 22). Generally, an initial exponential feed phase is followed by phases with constant and declining feed rates, respectively (8).From a theoretical point of view, the objective of suppressing alcoholic fermentation during the production phase may interfere with the aim of obtaining a high fermentative capacity in the final product. Process optimization has so far been based on strain selection and on empirical optimization of environmental conditions during fed-batch cultivation (e.g., pH, temperature, aeration rate, and feed profiles of sugar, nitrogen, and phosphorus [5, 10, 23]). For rational optimization of the specific growth rate profile, knowledge of the relation between specific growth rate and fermentative capacity is of primary importance. Nevertheless, quantitative data on this subject cannot be found in the literature.The chemostat cultivation system allows manipulation of the specific growth rate (which is equal to the dilution rate) while keeping other important growth conditions constant. Similar to industrial fed-batch cultivation, sugar-limited chemostat cultivation allows fully respiratory growth of S. cerevisiae on sugars (21, 37, 39). This is not possible in batch cultures, which by definition require high sugar concentrations, which lead to alcoholic fermentation, even during aerobic growth (6, 18, 37). Thus, as an experimental system, batch cultures bear little resemblance to the aerobic baker’s yeast production process. Indeed, we have recently shown that differences in fermentative capacity between a laboratory strain of S. cerevisiae and an industrial strain became apparent only in glucose-limited chemostat cultures but not in batch cultures (30).The aim of the present study was to assess the effect of specific growth rate on fermentative capacity in an industrial baker’s yeast strain grown in aerobic, sugar-limited chemostat cultures. Furthermore, the effect of specific growth rate on in vitro activities of key glycolytic and fermentative enzymes was investigated in an attempt to identify correlations between fermentative capacity and enzyme levels.  相似文献   

20.
A streptomycin-resistant mutant of Xanthomonas campestris was used to assess the persistence of the plant pathogen in soil and the changes in populations that might be important for its survival. In soil into which large numbers of the organism were introduced, a marked decline in its abundance occurred, but after about 1 week its population density reached a level of about 105 and did not continue to fall during the test period. No such marked decline was evident in sterile soil inoculated with X. campestris. The bacterium did not lose viability if starved for carbon or inorganic nitrogen. Although abundant in soil, the numbers of propagules capable of producing antibiotics or lytic enzymes active against X. campestris did not increase coincident with the pathogen's decline, and no increase in tartrate-extractable toxins was observed. Neither bdellovibrios nor bacteriophages active against the xanthomonad were found in the soil, but a marked increase in the frequency of protozoa paralleled the phase of rapid diminution in the X. campestris population. In actidione-treated soil, in which protozoan activity was severely limited, the high cell density of the pathogen was maintained. On the basis of these data, it is concluded that predation by protozoa is responsible for the abrupt fall in frequency of the bacterium in natural soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号