首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Arachidonic acid (AA; 20:4n-6) is one of the principal components of the phosphoglycerides in neural cell membranes. During the critical period of postnatal development in mammals, AA is supplied preformed, directly from the milk or derived from precursor fatty acids such as gamma-linolenic acid (GLA; 18:3n-6). In this study, 13C-NMR spectroscopy was applied to investigate the incorporation of [1-(13)C]AA and [3-(13)C]GLA into liver and brain lipids of 7-15-day-old rats. The main objective was to establish the importance of dietary GLA for tissue AA accretion relative to the contribution from preformed dietary AA. [1-(13)C]AA and [3-(13)C]GLA were injected into the stomach of 7-day-old rats as a mixture. 13C-NMR spectroscopy of lipid extracts revealed incorporation of [1-(13)C]AA and [5-(13)C]AA (the latter derived from metabolism of the injected [3-(13)C]GLA) into phosphoglycerides and triacylglycerols. Preformed AA was 10 (liver)-17 (brain) times more efficient in contributing to tissue AA than AA derived from precursor GLA. In separate experiments, NMR spectroscopy was used to assess uptake of [1-(13)C]AA directly in living rats and intact organs. Results showed that intact liver and brain contain an appreciable amount of NMR-detectable lipids. The in vivo/in vitro information obtained from organs provided details on the mobility and turnover of tissue lipids.  相似文献   

2.
Abstract: Glutamatergic synaptic dysfunction has been proposed as a causal factor in portal-systemic encephalopathy. Increased in vitro and in vivo glutamate release and decreased glutamate binding to NMDA receptors were previously reported in the brains of portacaval-shunted rats. Such changes could lead to alterations in the second messenger systems coupled to glutamate receptors. As NMDA receptors have been shown to act via the nitric oxide/cyclic GMP second messenger system, we studied the activities of constitutive nitric oxide synthase (NOS), in the brains of rats following portacaval shunting. Results demonstrate that NOS activities are significantly increased in cerebellum (by 54%, p < 0.01), cerebral cortex (by 65%, p < 0.01), hippocampus (by 88%, p < 0.01), and striatum (by 64%, p < 0.01) of shunted rats compared with sham-operated controls. As l -arginine transport is a prerequisite for nitric oxide production, we also studied l -[3H]arginine transport into cerebellar and cerebral cortical synaptosomes prepared from the brains of portacaval-shunted and sham-operated rats. l -[3H]Arginine uptake was significantly increased (by ∼50%, p < 0.01) in both cerebellum and cortex. Increased NOS activities of neuronal and/or astrocytic origin and the resultant increased production of nitric oxide in brain could be the consequence of increased NMDA receptor activation following portacaval shunting. Furthermore, increased nitric oxide production could contribute to the increased cerebral blood flow consistently observed following portacaval shunting.  相似文献   

3.
Abstract: The uptake of amino acids by microvessels isolated from brains of rats was studied. Previous studies have demonstrated alterations in blood-brain amino acid transport after portacaval shunt in rats. In order to elucidate whether such changes in the blood-brain barrier were located in the microvessels, brain microvessels were isolated from both rats with portacaval shunt and controls. Brain microvessels from rats 2 weeks after shunt operations took up significantly greater amounts of 14C-labeled neutral amino acids, but not of glutamic acid. lysine, or α-methylaminoisobutyric acid than microvessels from sham-operated controls. Measurement of uptake kinetics showed a higher V max for phenylalanine and leucine uptake and a lower V max for lysine uptake in microvessels from shunted rats compared with control, whereas the respective K m's of uptake were similar in both preparations. The results suggest that changes in brain microvessel transport activity account for altered brain neutral amino acid concentrations after portacaval shunt and that such changes can be studied in vitro in isolated microvessels.  相似文献   

4.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

5.
Excitatory amino acids have been implicated in the pathogenesis of hepatic encephalopathy. In the present study, kainate, quisqualate and N-methyl-D-aspartate (NMDA) subclasses of L-glutamate receptors were measured in adult rat brain by quantitative receptor autoradiography following surgical construction of an end-to-side portacaval anastomosis (PCA). PCA resulted in sustained hyperammonemia and decreased binding of L-glutamate to the NMDA receptor when compared to sham-operated controls. Decreases in binding ranged from 17 to 39% in several regions of cerebral cortex, hippocampus, striatum, and thalamus. Binding to quisqualate and kainate receptor subtypes was not altered. PCA leads to astrocytic changes in brain but does not result in any measurable loss of neuronal integrity. It is therefore proposed that decreased glutamate binding to the NMDA receptor following PCA results from increased extracellular glutamate caused by decreased reuptake into perineuronal astrocytes and a compensatory down-regulation of these receptors. Such changes could be of pathophysiological significance in hepatic encephalopathy.  相似文献   

6.
Abstract: Portal-systemic encephalopathy (PSE) is characterized by neuropsychiatric symptoms progressing through stupor and coma. Previous studies in human autopsy tissue and in experimental animal models of PSE suggest that alterations in levels of brain amino acids may play a role in the pathogenesis of PSE. To assess this possibility, levels of amino acids were measured using in vivo cerebral microdialysis in frontal cortex of portacaval-shunted rats administered ammonium acetate (3.85 mmol/kg, i.p.) to precipitate severe PSE. Sham-operated rats served as controls. Portacaval shunting resulted in significant increases of levels of extracellular glutamine (threefold, p < 0.001), alanine (38%, p < 0.01), aspartate (44%, p < 0.05), phenylalanine (170%, p < 0.001), tyrosine (140%, p < 0.001), tryptophan (63%, p < 0.001), leucine (75%, p < 0.001), and serine (60%, p < 0.001). Administration of ammonium acetate to sham-operated animals led to a significant increase in extracellular glutamine and taurine content, but this response was absent in shunted rats. The lack of taurine release into extracellular fluid following ammonium acetate administration in portacaval-shunted rats could relate to the phenomenon of brain edema in these animals. Ammonium acetate administration resulted in significant increases in the extracellular concentrations of phenylalanine and tyrosine in both sham-operated and portacaval-shunted rats. Severe PSE was not accompanied by significant increases in extracellular fluid concentrations of glutamate, aspartate, GABA, tryptophan, leucine, or serine, suggesting that increased spontaneous release of these amino acids in cerebral cortex is not implicated in the pathogenesis of hepatic coma.  相似文献   

7.
8.
Abstract: Cerebral metabolism of d [1-13C]glucose was studied with localized 13C NMR spectroscopy during intravenous infusion of enriched [1-13C]glucose in four healthy subjects. The use of three-dimensional localization resulted in the complete elimination of triacylglycerol resonance that originated in scalp and subcutaneous fat. The sensitivity and resolution were sufficient to allow 4 min of time-resolved observation of label incorporation into the C3 and C4 resonances of glutamate and C4 of glutamine, as well as C3 of aspartate with lower time resolution. [4-13C]Glutamate labeled rapidly reaching close to maximum labeling at 60 min. The label flow into [3-13C]glutamate clearly lagged behind that of [4-13C]glutamate and peaked at t = 110–140 min. Multiplets due to homonuclear 13C-13C coupling between the C3 and C4 peaks of the glutamate molecule were observed in vivo. Isotopomer analysis of spectra acquired between 120 and 180 min yielded a 13C isotopic fraction at C4 glutamate of 27 ± 2% (n = 4), which was slightly less than one-half the enrichment of the C1 position of plasma glucose (63 ± 1%), p < 0.05. By comparison with an external standard the total amount of [4-13C]glutamate was directly quantified to be 2.4 ± 0.1 µmol/ml-brain. Together with the isotopomer data this gave a calculated brain glutamate concentration of 9.1 ± 0.7 µmol/ml, which agrees with previous estimates of total brain glutamate concentrations. The agreement suggests that essentially all of the brain glutamate is derived from glucose in healthy human brain.  相似文献   

9.
Seven L-amino acids (Trp, Arg, Lys, Met, Ile, Val, and Phe) partially (28-81%) reversed the inhibitory action of 1 microM gamma-aminobutyric acid (GABA) on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain membranes, with EC50 values ranging from 5 to 120 mM. D-Trp, D-Arg, D-Lys, D-Met, D-Val, and D-Phe were approximately equipotent with their L-isomers. Tyramine, phenethylamine, and tryptamine, the decarboxylation products of the aromatic amino acids (Tyr, Phe, and Trp, respectively), reversed the inhibitory action of 1 microM GABA on [35S]TBPS binding more potently than the parent amino acids (EC50 values = 1.5-3.0 mM). Human hereditary amino acidemias involving Arg, Lys, Ile, Val, and Phe are associated with seizures, and these amino acids and/or their metabolites may block GABA-A receptors. Five other L-amino acids (ornithine, His, Glu, Pro, and Ala) as well as Gly and beta-Ala inhibited [35S]TBPS binding with IC50 values ranging from 0.1 to 37 mM, and these inhibitions were reversed by the GABA-A receptor blocker R 5135 in all cases. The inhibitory effects of L-ornithine, L-Ala, L-Glu, and L-Pro were stereospecific, because the corresponding D-isomers were considerably less inhibitory. L-His, D-His, and L-Glu gave incomplete (plateau) inhibitions. Human hereditary amino acidemias involving L-ornithine, His, Pro, Gly, and beta-Ala are also associated with seizures, and we speculate that these GABA-mimetic amino acids may desensitize GABA-A receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of an acute intravenous infusion of ammonium acetate on rat cerebral glutamate and glutamine concentrations, energy metabolism, and intracellular pH were measured in vivo with 1H and 31P nuclear magnetic resonance (NMR). The level of blood ammonia maintained by the infusion protocol used in this study (approximately 500 microM, arterial blood) did not cause significant changes in arterial PCO2, PO2, or pH. Cerebral glutamate levels fell to at least 80% of the preinfusion value, whereas glutamine concentrations increased 170% relative to the preinfusion controls. The fall in brain glutamate concentrations followed a time course similar to that of the rise of brain glutamine. There were no detectable changes in the content of phosphocreatine (PCr) or nucleoside triphosphates (NTP), within the brain regions contributing to the sensitive volume of the surface coil, during the ammonia infusion. Intracellular pH, estimated from the chemical shift of the inorganic phosphate resonance relative to the resonance of PCr in the 31P spectrum, was also unchanged during the period of hyperammonemia. 1H spectra, specifically edited to allow quantitation of the brain lactate content, indicated that lactate rose steadily during the ammonia infusion. Detectable increases in brain lactate levels were observed approximately 10 min after the start of the ammonia infusion and by 50 min of infusion had more than doubled. Spectra acquired from rats that received a control infusion of sodium acetate were not different from the spectra acquired prior to the infusion of either ammonium or sodium acetate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The metabolism of organic dormancy-breaking chemicals is poorly defined and may provide clues to their mode of action. Therefore, hydrated, dormant seeds of red rice ( Oryza sativa L.) were exposed to dormancy-breaking treatments of propionate-2-13C (22 m W ) or propanol-1-13C (75 m M ) for 24 h at 30°C. Embryo extracts were analyzed by 13C-nuclear magnetic resonance spectroscopy. Metabolism of propionate and propanol to 3-hydroxypropionate, an intermediate of the modified β-oxidation pathway, was detected after 2 and 4 h, respectively. This occurred prior to the onset of dormancy-breaking which required 12 h of chemical exposure. Accumulation of 3-hydroxypropionate was rapid and linear in the embryos of propionate-treated seeds. In the embryos of propanol-treated seeds, the level of 3-hydroxypropionate reached a plateau at 4 h. Following 24 h of contact with propionate, labeled citrate was detected in the embryos. The decrease in tissue pH associated with the dormancy-breaking process was fully accounted for by direct acid uptake and metabolic production of 3-hydroxypropionate.  相似文献   

13.
Proline is one of the major solutes accumulated upon salt stress in leaves, stem and roots of the subantarctic Brassicaceae Pringlea antiscorbutica R. Br. (Kerguelen cabbage). Using in vivo 13C-NMR techniques, it was possible for the first time to visualize the subcellular compartmentation of proline between cytoplasmic and vacuolar compartments in Pringlea leaves. We observed that this osmolyte accumulated at a 2–3 times higher concentration in the cytoplasm than in the vacuole.  相似文献   

14.
Samples of neocortex removed at diagnostic craniotomy from patients with Alzheimer's disease and incubated in vitro showed an increased production of 14CO2 from [U-14C]glucose compared with neurosurgical controls. This was a feature of incubations in the presence of both 5 mM K+ (142% control) and 31 mM K+ (126%). Specific labelling of the amino acid pool was unaltered, suggesting that the apparent increase of CO2 production was not merely a reflection of changes in dilution of the radiolabel from glucose. The content of adenine nucleotides was significantly less than control values in the tissue from patients with Alzheimer's disease after in vitro incubations but the adenylate energy charge was unchanged, indicating that normal energy metabolism was not grossly impaired in these preparations.  相似文献   

15.
Abstract: Production of [14C]acetylcholine and 14CO2 was examined by using tissue prisms from neocortex, hippocampus, and striatum from rats aged approximately 5 months, 13 months, and 27 months. [14C]Acetylcholine synthesis in the striatum showed highly significant decreases with age for measurements in the presence of both 5 m m - and 31 m m -K+, contrasting with the lack of significant change in 14CO2 production in this region. The neocortex and hippocampus showed only small changes, especially when comparison was made between 13-month and senescent animals. Measurements of the release of [14C]acetylcholine and influence of atropine on this release confirmed the relative stability with age of the cholinergic system in the neocortex.  相似文献   

16.
Seasonal variation in δ13C and δ18O of cellulose (δ13Cc and δ18Oc) was measured within two annual rings of Pinus radiata growing at three sites in New Zealand. In general, both δ13Cc and δ18Oc increased to a peak over summer. The three sites differed markedly in annual water balance, and these differences were reflected in δ13Cc and δ18Oc. Average δ13Cc and δ18Oc from each site were positively related, so that the driest site had the most enriched cellulose. δ13Cc and δ18Oc were also related within each site, although both the slope and the closeness of fit of the relationship varied between sites. Supporting the theory, the site with the lowest average relative humidity also had the greatest change in δ18Oc‰ change in δ13Cc. Specific climatic events, such as drought or high rainfall, were recorded as a peak or a trough in enrichment, respectively. These results suggest that seasonal and between‐site variation in δ13Cc and δ18Oc are driven by the interaction between variation in climatic conditions and soil water availability, and plant response to this variation.  相似文献   

17.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

18.
Well-nodulated soybean ( Glycine max L. Merr. cv. Akisengoku) plants were allowed to assimilate 13CO2. Plant cytosol and bacteroid fractions were isolated from nodules, and the kinetics of [13C]-labelling of soluble carbohydrates, organic acids and amino acids were investigated.
The concentrations of all metabolites, with the exception of trehalose and 3-hydroxy-butyrate, were 10- to 1000-fold higher in plant cell cytosol than in bacteroids. The major portion of trehalose was found in bacteroids and 3-hydroxybutyrate only in bacteroids. Sucrose was most highly labelled with 13C in nodules, and the levels and time-course of labelling of sucrose were in good agreement with those of respired CO2 from the nodules. The levels and time-courses of labelling of sucrose were closely similar in cytosol and bacteroids. Glucose was less labelled than sucrose and the level of labelling was consistently higher in cytosol than in bacteroids. The levels of [13C]-labelling of organic acids and amino acids in nodules were lower than those of sucrose and of respired CO2. Tricarboxylic acid cycle intermediates, particularly succinate, were considerably less labelled in bacteroids than in the cytosol. All amino acids detected were also much more rapidly labelled in the cytosol. The results are discussed in relation to the utilization and possible compartmentation of carbon substrates in nodule tissues.  相似文献   

19.
Evidence is presented for a very specific, seasonally recurring tri‐phase carbon isotope pattern in tree rings of broad‐leaf deciduous tree species. It is derived from highly resolved intra‐annual measurements of 13C/12C ratios of wood and cellulose from tree rings of Fagus sylvatica, Populus nigra, Quercus petraea and Morus alba. Investigations on δ13C from buds and leaves of Fagus sylvatica revealed a similar tri‐phase δ13C pattern. At the very beginning of a growing season, the δ13C trend of tree rings and foliage shows a marked increase of up to 5‰. The maximum δ13C‐value of each vegetation period always occurs in young heterotrophic leaves shortly after bud burst and persistently in the early wood of each tree ring, when growth depends on carbon reserves. Thereafter, δ13C profiles represent the autotrophic stage of the leaves, which show different patterns of variation, by and large characterized by a decline. The minimum δ13C‐value always shows up in the late wood of each tree ring. At the very end of each tree ring δ13C‐values start rising again. This increase in δ13C marks the gradual switch‐over to storage‐dependent growth and can also be observed in senescent leaves. Seasonal changes of more than 4‰ were measured, whereas contiguous δ13C values rarely differed from each other by more than 0.3‰. This tri‐phase pattern cannot be explained by the common model of carbon isotope fractionation during photosynthesis. It appears to be primarily an indication of seasonal changes in down‐stream processes of the carbohydrate metabolism. Environmental influences on the carbon isotope fractionation during photosynthesis are presumably of secondary importance and expressed by certain peculiarities showing up during the autotrophic phase, i.e. the mid‐section of the seasonal δ13C pattern.  相似文献   

20.
We compared influxes and internal transport in soybean plants (Glycine max cv. Kingsoy) of labelled N from external solutions where either ammonium or nitrate was labelled with the stable isotope15N and the radioactive isotope13N. The objective was to see whether mass spectrometric determinations of tissue 15N content were sufficiently sensitive to measure influxes accurately over short time periods. Our findings were as follows. (1) There was a close quantitative correspondence between estimates of N influx of individual plants using 15N or 13N measurements with either NO3/? or NH4+ at 4 or 2 mol?3, respectively in the external solution. (2) Transport to the shoot of N from NO3 absorbed over a 5–15 min period could be monitored when the external NO3? concentration ranged from 0–05 to 4 mol m?3. NH4+ as the N source labelled shoot tissue more slowly, and estimates of the transport between root and shoot could be made only with 13N. (3) Influx of NO3? into root tissue could be measured by 15N enrichment after 5–10 min at concentrations approaching the probable KM of the high-affinity transport system. (4) There was some indication of isotope discrimination, especially with respect to the movement of labelled N to the shoot, when NO3? is the N source. For many purposes, 15N tracing can be used satisfactorily to estimate influxes of both NO3? and NH4+ in soybean roots. Use of the short-lived radio nuclide 13N remains the method of choice for more refined measurements of internal distribution and assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号