首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HALOPHILIC bacteria require high concentrations of sodium chloride and lower concentrations of KCl and MgCl2 for growth. The cell membrane dissociates into fragments of varying size when the salt is removed1. One characteristic fragment—termed the “purple membrane” because of its characteristic deep purple colour—has been isolated in relatively pure form from Halobacterium halobium2. We can now show that the purple colour is due to retinal bound to an opsin-like protein, the only protein present in this membrane fragment (see also ref. 3).  相似文献   

2.
Bacteriorhodopsin, the protein of the purple membrane of Halobacterium halobium, was freed to the extent of 90–95% from the natural membrane lipids without loss of function. The residual lipid corresponded to less than 1 mol/mol of bacteriorhodopsin. Delipidation was achieved by treatment of the purple membrane with a mixture of the detergent dimethyldodecylamine oxide and sodium chloride. The detergent was removed by dialysis or by sucrose density gradient centrifugation. Analysis of the lipids removed and those still bound to bacteriorhodopsin was facilitated by the use of purple membrane preparations labelled with 35S, 32P, or 14C. The composition of the residual lipids associated with bacteriorhodopsin was similar to that of the total lipid in the purple membrane.  相似文献   

3.
Biogenesis of the purple membrane of Halobacterium halobium   总被引:1,自引:0,他引:1  
A protein closely resembling the purple membrane protein pre-exists in the cell membrane of H. halobium prior to the appearance of functional bacteriorhodopsin. It is associated with a differentiated membranous structure which has been isolated on a sucrose gradient and appears to be a precursor of the purple membrane. The identity of the precursor protein as a form of the purple membrane protein was established in different ways: (1) The cell proteins were labelled in vivo with 14C-proline during dark aerobic growth, the label was chased, and the cells transferred to the illuminated near-anaerobic conditions under which purple membrane is optimally synthesised (induction conditions). Cell lysates were fractionated on sucrose gradients at different times after induction. Label first found in the precursor fraction appeared within 24 h in the purple membrane fraction. (2) SDS-urea-acrylamide gel electrophoresis of the purple membrane protein and the precursor showed only one protein band whose migration coincided with that of the purple membrane band. (3) The amino-acid analysis of the purified precursor was very similar to that of the purple membrane.The absorption spectrum of the precursor showed little of the characteristic absorption of bacteriorhodopsin at 570 nm. A major band appears at 412 nm, the exact nature of which is not known. The difference spectrum (reduced versus oxidised) of a purified fraction showed only traces of cytochrome. Thin-layer chromatography of an acetone-soluble lipid extract indicated the presence of retinal and -carotene. Cells grown in the presence of nicotine did not develop purple membrane after induction: the species absorbing at 412 nm was much less abundant than in non-inhibited cells, but a new fraction was present with a sharp peak at 345 nm consisting mainly of lycopene.Abbreviations CTAB cetyltrimethyl ammonium bromide - SDS sodium dodecyl sulfate - CAP chloramphenicol - TLC thin layer chromatography - CD circular dichroism  相似文献   

4.
Techniques for purifying the purple membrane of Halobacterium halobium are given. This purple membrane contains a chromoprotein with a retinal prosthetic group similar to rhodopsin, the chromoprotein found in the visual systems of higher invertebrates and vertebrates. The described purple membrane isolation procedures yield a highly purified preparation as determined by transmitting electron microscopy and gel electrophoresis. Critical analysis of the absorption spectra of the purple membrane was also employed to establish criteria of purity for the preparation. The visible absorption spectra of the purified purple membrane preparation in buffer was found to have a maximum at 559 nm which shifted to 567 nm on light exposure. No indication of any spectral perturbation arising from bacterioruberin-containing membrane, the major contaminant in purple membrane preparations, was found. Furthermore, the ratio of protein aromatic amino acid absorbance at 280 nm to chromophore absorbance at 567 nm was found to be 1.5 in light-exposed preparations compared to the previously reported ratio of 2.0.3 The decrease in the value of this ratio is also indicative of an increase in the purity of the purple membrane preparation.  相似文献   

5.
Resonance Raman spectra of bacteriorhodopsin are compared to the spectra of this protein modified in the following ways: (1) selective deuteration at the C-15 carbon atom of retinal, (2) full deuteration of the retinal, (3) the addition of a conjugated double bond in the β-ionone ring (3-dehydroretinal), (4) full deuteration of the protein and lipid components, (5) 15N enrichment of the entire membrane and (6) deuteration of the entire membrane (including the retinal). A detailed comparison of the 15N-enriched membrane and naturally occurring purple membrane from 800 cm?1 to 1700 cm?1 reveals that 15N enrichment affects the frequency of only two vibrational modes. These occur at 1642 cm?1 and 1620 cm?1 in naturally occurring purple membrane and at 1628 cm?1 and 1615 cm?1 in the 15N-enriched samples. Therefore, this pair of bands reflects the states of protonation of the Schiff base. However, our data also indicate that neither of these modes are simple, localized C=?H or C=N stretching vibrations. In the case of the 1642 cm?1 band motions of the retinal chain beyond C-15 are not significantly involved. On the other hand, in the 1620 cm?1 band atomic motions in the isoprenoid chain beyond C-15 are involved.  相似文献   

6.
The presence of phenolic compounds in fruit‐ and vegetable‐rich diets has attracted researchers' attention due to their health‐promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3‐(4,5‐dimethylthiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml?1 of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7‐amino‐actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml?1 of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Purple membrane fragments from Halobacterium halobium were oriented by a static electric field in a water suspension. It was found that an electric field of approx. 20 V/cm is sufficient to achieve practically complete orientation; the purple membranes have a permanent electric dipole moment of (6 ±1)· 10?23 C · m, the orientation of the retinal transition moment relative to the direction of the electric dipole moment, θ, is (59 ± 1)0, and the purple membrane rotational diffusion constant Drot = 0.65 s?1. It was found that because of the electrophoretic movement of the particles a hydrodynamic velocity gradient builds up which also orients the purple membranes.  相似文献   

8.
Several observations have already suggested that the carboxyl groups are involved in the association of divalent cations with bacteriorhodopsin (Chang et al., 1985). Here we show that at least part of the protons released from deionized purple membrane (`blue membrane') samples when salt is added are from carboxyl groups. We find that the apparent pK of magnesium binding to purple membrane in the presence of 0.5 mM buffer is 5.85. We suggest this is the pK of the carboxyl groups shifted from their usual pK because of the proton concentrating effect of the large negative surface potential of the purple membrane. Divalent cations may interact with negatively charged sites on the surface of purple membrane through the surface potential and/or through binding either by individual ligands or by conformation-dependent chelation. We find that divalent cations can be released from purple membrane by raising the temperature. Moreover, purple membrane binds only about half as many divalent cations after bleaching. Neither of these operations is expected to decrease the surface potential and thus these experiments suggest that some specific conformation in purple membrane is essential for the binding of a substantial fraction of the divalent cations. Divalent cations in purple membrane can be replaced by monovalent, (Na+ and K+), or trivalent, (La+++) cations. Flash photolysis measurements show that the amplitude of the photointermediate, O, is affected by the replacement of the divalent cations by other ions, especially by La+++. The kinetics of the M photointermediate and light-induced H+ uptake are not affected by Na+ and K+, but they are drastically lengthened by La+++ substitution, especially at alkaline pHs. We suggest that the surface charge density and thus the surface potential is controlled by divalent cation binding. Removal of the cations (to make deionized blue membrane) or replacement of them (e.g. La+++-purple membrane) changes the surface potential and hence the proton concentration near the membrane surface. An increase in local proton concentration could cause the protonation of critical carboxyl groups, for example the counter-ion to the protonated Schiff's base, causing the red shift associated with the formation of both deionized and acid blue membrane. Similar explanations based on regulation of the surface proton concentration can explain many other effects associated with the association of different cations with bacteriorhodopsin.  相似文献   

9.
《FEBS letters》1986,205(1):29-31
Porin (the product of gene ompF) is an integral membrane protein (Mr 36 500) of the outer membrane of Escherichia coli (strain BE). The protein has been purified to homogeneity and reconstituted in dimyristoyl-lecithin. Oriented specimen on a flat surface yielded X-ray diffraction pattern, originating from the two-dimensional protein lattice, to a resolution reaching 6 Å. Although these powder rings are broad compared to corresponding diffraction patterns from purple membranes of Halobacterium halobium, porin is the first reconstituted integral membrane protein which shows diffraction to this resolution.  相似文献   

10.
Leo D. Kahn  Shu-I Tu 《Biopolymers》1984,23(4):707-718
An electric birefringence study was carried out on aqueous suspensions of the purple membrane of Halobacterium halobium. In addition to the characterization of both native and modified membrane samples, the dependence of electric birefringence on pH and ionic strength was also investigated. The results indicate that purple membrane shows electric birefringence at a field strength as low as 200 V/cm. The permanent dipole moment and polarizability ranged from 20,500 debyes and 1.01 × 10?14 cm3 for a purple membrane concentration of 0.40 mg/mL to 41,000 debyes and 2.05 × 10?14 cm3 for a concentration of 0.80 mg/mL. It was also found that removal of the retinyl group of bacteriorhodopsin substantially decreases but does not eliminate the electric birefringence of the membrane. The solubilization of the membrane by Triton X-100, however, completely abolishes the electric birefringence. These experiments indicate that there is an interaction between adjacent bacteriorhodopsin molecules within the purple membrane via the retinyl chromophore moiety that builds up the permanent dipole moment. They also suggest that there are two types of response when purple membrane suspensions are placed in an electric field. One is an alignment of the disk-shaped particles with the field. The other is a stacking of the particles following their alignment by the electric field, which is promoted by the induced dipole moment.  相似文献   

11.
Pairs of PCR primers that targeted the archae/bacteriorhodopsin gene were used to clone the archaerhodopsin (aR) gene of Halorubrum xinjiangense strain BD-1T, and this gene was sequenced and functionally expressed in Escherichia coli. Recombinant E. coli cells harboring the plasmid carrying this gene became slightly purple or blue depending on whether they were supplemented with all- trans retinal or 3,4-dihydroretinal, respectively, during induction with IPTG. The purple and blue membranes from the recombinant E. coli showed maximal absorption at 555 and 588 nm, respectively, which are different from maximal absorption at 568 nm of the wild-type purple membrane. Purple membranes from the recombinant E. coli and from strain BD-1T were investigated in parallel. The E. coli purple membrane was fabricated into films and photoelectric responses were observed that depended on the light-on and light-off stimuli.  相似文献   

12.
Summary Purple membrane vesicles prepared by different techniques differ widely in their morphology and ability to establish a proton gradient in the light. The procedures used to prepare active vesicles do not completely dissociate the purple membrane and thus preserve a preferential orientation of the protein, while most of the lipid is exchanged for added lipid. Responses to illumination are largely determined by the size of the vesicles and the degree to which bacteriorhodopsin is preferentially oriented. Any attempt to compare the interaction of different lipids with bacteriorhodopsin by measuring the pH response must take these factors into account.With an improved technique we have obtained vesicles of rather uniform size and bacteriorhodopsin orientation, which accumulate protons with an initial rate of 160 ng H+ sec–1 mg–1 protein at light intensities of 106 erg cm–2 sec–1. The kinetics of the process are complex and at present insufficiently understood.  相似文献   

13.
Bacteriorhodopsin (bR), converted by deionization to the blue form was reconstituted to the active purple membrane by the addition of Fe2+ or Fe3+ ions. 57Fe Mossbauer spectra of these samples were measured at different pH values (pH 3.9, pH 5.0 and pH 7.0) and at temperatures ranging from 4 K to 300 K. The hyperfine parameters reveal two iron environments with oxygen atoms in the neighbourhood of iron. Iron type 1 is in the 3+ high spin state. It is bound to acid side chains of the protein and/or the phosphate groups of the lipids. Iron type 2 is in the 2+ high spin state and is linked to carboxy groups of the protein in a rather unspecific way. Dynamics as measured by Mossbauer spectroscopy show that the purple membrane becomes flexible only above 220 K. At the interface between membrane and bulk water the mobility is comparable to that of proteins with hydrophilic surfaces. The photocycle of Fe 3+-bR is slowed down compared to native bR. 3–5 Fe3+/bR are sufficient to inhibit the photocycle turnover by one order of magnitude. This specific effect is also found with Cr3+, though it is less pronounced. Mössbauer spectra of Fe3+-bR at 4 K reveal that iron nuclei are spin-coupled, indicating their close spatial proximity. It is proposed that iron trinuclear clusters interact with the proton uptake site of bR. Offprint requests to: M. Engelhard  相似文献   

14.
Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.  相似文献   

15.
《FEBS letters》1986,202(2):356-360
The possibility that light-induced protein conformational changes accompany the formation of the M412 species in the bacteriorhodopsin photocycle is investigated by polarized Fourier transform infrared (FTIR) spectroscopy on oriented films of purple membrane. From the light-induced FTIR dichroism changes, it is estimated that: (i) the CO stretching vibration at 1762 cm−1, which has been assigned to a protonated Asp carboxyl group in M412 [(1985) Biochemistry 24, 400-407], is oriented at (θ = 35 ± 5° from the normal to the membrane plane; (ii) the limit for the change in the average tilt angle of the α-helices after photoconversion is less than 2°. The latter observation excludes the large variations in the protein conformation during the M412 formation proposed by Draheim and Cassim [(1985) Biophys. J. 47, 497-507].  相似文献   

16.
Two bacterial species at the upper boundary of the H2S-containing lower layer of Lake Kaiike, a purple sulfur bacterium and Macromonas sp., markedly changed their population densities in a single year (maximum cell numbers ranged between 106 and <103 cells ml–1), although neither species ever entirely disappeared from the lake over at least the past 30 years. Genetic characteristics based on the sequence of the 16S rDNA of the purple sulfur bacterium showed it to be a new species of the Chromatiaceae family. This bloom of purple sulfur bacterium occurred when the H2S layer was disturbed by an external intrusion of seawater.  相似文献   

17.
Hydrolyzable tannin (3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose) has a dual effect on the cell membrane: (1) it binds to a plasmalemmal protein of the Chara corallina cell (C50 = 2.7 ± 0.3 μM) and (2) it forms ionic channels in the lipid membrane. Based on these facts, a molecular model for the interaction of tannins with the cell membrane is proposed. The model suggests that the molecules of hydrolyzable tannin bind electrostatically to the outer groups of the membrane protein responsible for the Ca2+-dependent chloride current and blocks it. Some tannin molecules penetrate into the hydrophobic region of the membrane, and when a particular concentration is reached, they form ion-conducting structures selective toward Cl?.  相似文献   

18.
The spatial location and orientation of the retinal chromophore in bacteriorhodopsin were estimated from a fluorescence energy transfer study. The energy donor used in this study was a fluorescent retinal derivative, which was obtained by partial reduction of the purple membrane with sodium borohydride, and the energy acceptor was the native chromophore remaining in the same membrane. Since bacteriorhodopsin forms a two-dimensional crystal with P3 symmetry in the purple membrane, and the membrane structure is maintained after the reduction, the rate of energy transfer from a donor to any acceptor existing in the same membrane can be calculated as a function of the location and orientation of the chromophores in the unit cell. Quantitative analyses of the fluorescence decay curve and the quantum yield, with various extents of reduction, enabled us to determine the most probable location and orientation. The result suggested that the chromophore was situated near the centre of the protein in such an orientation that the dipole-dipole interaction with neighbouring chromophores was close to minimum.  相似文献   

19.
Pronase treatment of aqueous suspensions of purple membrane fragments from H. halobium leads to the cleavage of bacteriorhodopsin. The protein fragments remaining in the membrane after treatment with relatively small concentrations of enzyme (2% w/w) in normal daylight range in molecular weight from 20,000-21,000 daltons, indicating that cleavage occurs mainly near the extremities of the protein chain. At higher enzyme concentrations the relative amounts of protein fragments having smaller molecular weight increase. Generally, the relative loss of retinal chromophore is larger than that of protein and thus the retinal binding site seems to be located near one of the chain ends that is cleaved off by enzyme.Irradiation with white light during the time of proteolysis (at both low and high enzyme concentrations) results in extensive cleavage, so that under certain conditions no high molecular weight components can be detected in SDS-polyacrylamide gels. It, therefore, appears that parts of the bacteriorhodopsin chain become more exposed to enzyme digestion when the purple membrane is illuminated.Enzyme treated aqueous purple membrane fragment suspensions still show photocycle activity. The main consequence of proteolysis is a pronounced appearance of biphasicity in the decay of M412 and the regeneration of bR570. Simultaneously the yield of O660 is reduced. As with untreated purple membrane, the correlation between the rates of decay of M412 and regeneration of bR570 is greatest when the yield of O660 is lowest.  相似文献   

20.
This research aimed to evaluate the capacity of acid-resistant purple nonsulfur bacteria, Rhodopseudomonas palustris strains VNW02, TLS06, VNW64, and VNS89, to resist Al3+ and Fe2+ and to investigate their potential to remove both metals from aqueous solutions using exopolymeric substances (EPS) and biomasses. Based on median inhibition concentration (IC50), strain VNW64 was the most resistant to both metals under conditions of aerobic dark and microaerobic light; however, strain TLS06 was more resistant to Al3+ under aerobic dark conditions. High metal concentrations resulted in an altered cellular morphology, particularly for strain TLS06. Metal accumulation in all tested PNSB under both incubating conditions as individual Al3+ or Fe2+ was in the order of cell wall?>?cytoplasm?>?cell membrane. This was also found in a mixed metal set only under conditions of aerobic dark as microaerobic light was in the degree of cytoplasm?>?cell wall?>?cell membrane. Of all strains tested, EPS from strain VNW64 had the lowest carbohydrate and the highest protein contents. Metal biosorption under both incubating conditions, EPS produced by strains VNW64 and TLS06, achieved greater removal (80 mg Al3+ L?1 and/or 300 mg Fe2+ L?1) than their biomasses. Additionally, strain VNW64 had a higher removal efficiency compared to strain TLS06. Based on the alteration in cellular morphology, including biosorption and bioaccumulation mechanisms, R. palustris strains VNW64 and TLS06 demonstrated their resistance to metal toxicity. Hence, they may have great potential for ameliorating the toxicity of Al3+ and Fe2+ in acid sulfate soils for rice cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号