首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The economic value of ecosystem services of vegetated habitats (seagrass and macroalgal beds) has been estimated to be among the highest of the various ecosystems on earth. However, fish production has not been included in the evaluations due to the difficulty of quantitative estimation of fish production in the field. In the present study, annual production and economic value of wild juvenile black rockfish, Sebastes cheni, a dominant fish species in seagrass and macroalgal beds in the central Seto Inland Sea were estimated. Juvenile S. cheni migrated into vegetated habitats at about 20 mm total length (TL) and grew up to about 60 mm TL by late May. Juvenile abundance was highest in April (2007) or March (2008). Eight cohorts with the same extrusion period (each cohort covering a 10-day period) were identified using otolith daily increments. The annual estimates of S. cheni juvenile production were 13,080 g ha−1 year−1 in 2007 and 18,360 g −1 year−1 in 2008. Based on the unit price of artificially raised S. cheni juveniles, the economic value of the annual wild juvenile production was converted to 654,000 JPY (Japanese yen: 100 JPY = ca. 1 USD) ha−1 year−1 for 2007 and 918,000 JPY ha−1 year−1 for 2008. Analyses of stomach contents and stable isotope (δ13C or δ15N) showed that juvenile S. cheni were highly dependent on copepods. The planktonic trophic pathway originating from phytoplankton supports the majority of the juvenile black rockfish production during the post-migration period (20–60 mm TL) in the seagrass and macroalgal beds through the production of copepod zooplankton. The total economic value of the ecosystem services of the vegetated habitat is suggested to be much higher than estimates in previous studies if the provisioning and regulating services which originate from fish production were included in the estimates.  相似文献   

2.
To quantify organic matter mineralization at estuarine intertidal flats, we measured in situ sediment respiration rates using an infrared gas analyzer in estuarine sandy intertidal flats located in the northwestern Seto Inland Sea, Japan. In situ sediment respiration rates showed spatial and seasonal variations, and the mean of the rates is 38.8 mg CO2-C m−2 h−1 in summer. In situ sediment respiration rates changed significantly with sediment temperature at the study sites (r 2 = 0.70, p < 0.05), although we did not detect any significant correlations between the rates and sediment characteristics. We prepared a model for estimating the annual sediment respiration based on the in situ sediment respiration rates and their temperature coefficient (Q 10 = 1.8). The annual sediment respiration was estimated to be 92 g CO2-C m−2 year−1. The total amount of organic carbon mineralization for the entire estuarine intertidal flats through sediment respiration (43 t C year−1) is equivalent to approximately 25% of the annual organic carbon load supplied from the river basin of the estuary.  相似文献   

3.
The humpback red snapper Lutjanus gibbus (Lutjanidae) is an important species for fisheries in the Kagoshima and Okinawan region of Japan. The present study estimated the age, growth and reproduction of this lutjanid species in the waters around Ishigaki Island, southern part of Okinawa. An opaque zone was formed on the otolith every year, and this formation correlated with their spawning season; these zones were identified as annual rings. Maximum ages of 21 and 24 years were observed for males and females, respectively. The von Bertalanffy growth parameters clarifying the age–fork length relationship were as follows: L  = 390.5 mm, K = 0.210 year−1 and t 0 = −1.88 year for males, and L  = 303.4, K = 0.256 year−1 and t 0 = −3.05 year for females. The main spawning season was estimated as between May and October, since greater values of gonadosomatic index for females as well as maturation oocytes and/or postovulatory follicles were observed during those six months.  相似文献   

4.
This paper attempts to establish linkages between growth by a keystone wetland plant, Panicum hemitomon Schultes, and the independent and interactive effect of nutrient and hydrologic regime to inform management and rehabilitation of thick-mat floating marsh (TMFM). To do so a manipulative glasshouse experiment employing created TMFM similar to that under consideration for field trials and two levels each of N, P and hydrology was conducted. P. hemitomon grew vigorously under saturated (flooding level with the surface of the mat) when compared to inundated (+15 cm flooding) hydrologic conditions, and under enriched (50 g m−2 year−1) when compared to non-enriched (25 g m−2 year−1) N. Further, and as inferred from net CO2 assimilation, shoot biomass and rhizome biomass and length, N-enriched conditions seemed to lessen inundation stress. For all variables the interaction between N and hydrology was non-significant and there was no observable effect of P. We were unable to infer root or mat buoyancy from root specific gravity measurements but it was evident at harvest that saturation or minimal flooding is required for vigorous root and rhizome growth. This study provides insight to the notion that decreased mat buoyancy (and increased flooding level) resulting from sediment deposition associated with Mississippi River diversions could adversely affect TMFM sustainability, but more clearly demonstrates the need to maintain saturated hydrologic conditions for achieving the type of root and rhizome growth we feel is required for TMFM rehabilitation.  相似文献   

5.
A reciprocal transplant experiment (RTE) of the reef-building coral Porites lobata between shallow (1.5 m at low tide) back reef and forereef habitats on Ofu and Olosega Islands, American Samoa, resulted in phenotypic plasticity for skeletal characteristics. Transplants from each source population (back reef and forereef) had higher skeletal growth rates, lower bulk densities, and higher calcification rates on the back reef than on the forereef. Mean annual skeletal extension rates, mean bulk densities, and mean annual calcification rates of RTE groups were 2.6–9.8 mm year−1, 1.41–1.44 g cm−3, and 0.37–1.39 g cm−2 year−1 on the back reef, and 1.2–4.2 mm year−1, 1.49–1.53 g cm−3, and 0.19–0.63 g cm−2 year−1 on the forereef, respectively. Bulk densities were especially responsive to habitat type, with densities of transplants increasing on the high energy forereef, and decreasing on the low energy back reef. Skeletal growth and calcification rates were also influenced by source population, even though zooxanthella genotype of source colonies did not vary between sites, and there was a transplant site x source population interaction for upward linear extension. Genetic differentiation may explain the source population effects, or the experiment may have been too brief for phenotypic plasticity of all skeletal characteristics to be fully expressed. Phenotypic plasticity for skeletal characteristics likely enables P. lobata colonies to assume the most suitable shape and density for a wide range of coral reef habitats.  相似文献   

6.
Schizopygopsis younghusbandi younghusbandi is an endemic species whose distribution is restricted to the middle reaches of the Yarlung Zangbo River, being one of the most important commercial fishes in this area. Age and growth of 606 specimens captured between October 2002 and April 2005 were studied. The range in standard length (L) was 65.7–387.3 mm and total weight (W) was 3.3–772.0 g. The relationship between L and W was W = 0.000909L2.2493 for males and W = 0.000259L2.4781 for females. Age, determined from anal scales and lapillus otoliths, ranged from 3 to 18 years. The parameters of von Bertalanffy growth functions, estimated by back-calculated length, were L = 442.7mm  LL_\infty = 442.7mm\;L, k = 0.0738 year−1 and t 0  = −1.4 year for males, and L = 471.4mm  LL_\infty = 471.4mm\;L, k = 0.0789 year−1 and t 0 = 0.2 year for females. Males and females exhibited statistically significant differences in growth. χ 2-test indicated that von Bertalanffy growth functions could well describe the growth of S. y. younghusbandi. The longevities were 39.2 and 38.2 years for males and females, respectively. Growth inflexion points were 10.2 and 12.0 years for males and females, respectively, but 84.8% of the captures were at the smaller ages. So conservation and management schemes for this population should be considered urgently. In addition, we found that populations from the upstream of the Lhasa River, the downstream of the Lhasa River and the middle reaches of the Yarlung Zangbo River showed statistically significant differences in growth patterns.  相似文献   

7.
Pinus sylvestris L., Abies alba Mill. and Fagus sylvatica L.—the significant forest forming tree species in Europe are important for palaeoecological interpretations based on the results of pollen analysis of fossil deposits. The potential pollen loading for Pinus sylvestris, Abies alba and Fagus sylvatica was modelled using simulated and actual vegetation maps, measured fall-speed values and pollen productivity estimates from the literature. The influx of fir pollen drops sharply with distance from the pollen source due to the high fall speed and moderate pollen productivity. The vast majority of Abies alba pollen is deposited within less than 50 m of the sampling site and a major proportion within 100 m. For beech the corresponding numbers would be 300 and 1,800 m, and for pine 1,000 and 4,500 m. The observed mean pollen accumulation rate (PAR) values for Pinus and Fagus were ca. 5,800 and 1,100 grains cm−2 year−1, respectively. In the case of Abies, the mean annual PAR for the whole region is ca. 700 grains cm−2 year−1. In SE Poland the regional signal is represented by PARs of Abies alba <200 grains cm−2 year−1 and of Fagus sylvatica <500 grains cm−2 year−1. The local presence/absence threshold values for Abies alba, Fagus sylvatica and Pinus sylvestris are >1,000 grains cm−2 year−1, >2,000 grains cm−2 year−1 and >3,500 grains cm−2 year−1 respectively.  相似文献   

8.
Estimates of lichen growth rates based on the measurements of several thalli at any site do not exist for continental Antarctica. However, the very limited existing data suggest that lichen growth rate may be a good indicator of climate change in Antarctica. We present measurements made on thalli of the lichen Buellia frigida Darb. growing in the Dry Valleys, Southern Victoria Land, continental Antarctica, which appear to have some of the slowest radial growth rates yet measured. Photographs of thalli at three different sites were analysed for growth over a 25-year period using nano-GIS techniques. At one site, Mt. Falconer Summit, the lichens had a mean growth rate of 0.0052 mm year−1 with one individual as low as 0.0036 mm year−1. Thalli at the other two sites had significantly higher mean growth rates, 0.0136 mm year−1 at Mt. Falconer Ridge and 0.0118 mm year−1 at Rhone Bench. Assuming a constant growth rate, thalli at Mt. Falconer Summit had a mean age of 5,367 years, whilst the thalli at the other two sites were much younger, 840–1,026 years. We suggest that the different ages represent the appearance of new substrate for colonisation following climate changes in the Dry Valleys that altered the amount and duration of snow. The results confirm that lichen growth rate differs by almost two orders of magnitude over a latitudinal range of 15 degrees from south to north across Antarctica.  相似文献   

9.
The polychaete Nereis falsa Quatrefages, 1866 is present in the area of El Kala National Park on the East coast of Algeria. Field investigations were carried out from January to December 2007 to characterize the populations’ reproductive cycle, secondary production and dynamics. Reproduction followed the atokous type, and spawning occured from mid-June to the end of August/early September when sea temperature was highest (20–23°C). The diameter of mature oocytes was approximately 180 μm. Mean lifespan was estimated to about one year. In 2007, the mean density was 11.27 ind. m−2 with a minimum of 7.83 ind. m−2 in April and a maximum of 14.5 ind. m−2 in February. The mean annual biomass was 1.36 g m−2 (fresh weight) with a minimum of 0.86 g m−2 in December and a maximum of 2.00 g m−2 in June. The population consisted of two cohorts distinguishable from size frequency distributions. One cohort corresponded to the recruitment of 2006 and the other appeared during the study period in September 2007. The annual production of N. falsa was 1.45 g m−2 year−1, and the production/biomass ratio was 1.07 year−1.  相似文献   

10.
Biological parameters such as age, growth and age (or size) at maturity are vital for stock assessment and management. Aging is essential in yielding such information. However, limited aging studies have been conducted for large tropical pelagic species in the eastern and central tropical Pacific Ocean. The objective of this study is to conduct a length frequency analysis for estimating growth and mortality of bigeye tuna in the eastern and central tropical Pacific Ocean using samples from the Chinese longline fishery during February to November 2006. The von Bertalanffy growth parameters of asymptotic fork length L and growth coefficient k were estimated at L = 207.4 cm fork length, k = 0.23 year-1, and theoretical age at zero length t 0 = −0.40 year. The total mortality rate (Z) was estimated to be 0.60; the fishing mortality rate (F) and the natural mortality rate (M) were 0.25 year-1 and 0.35 year-1, respectively. The exploitation rate (E) was 0.16. This study provides the estimates of growth and mortality rate for bigeye tuna in the eastern and central tropical Pacific Ocean, which can be used as biological input parameters in further stock evaluations in this region. However, age analysis, further validation of the age composition and stock structure are needed for future studies.  相似文献   

11.
Biomass and aboveground net primary production (ANPP) in a monospecific pioneer stand of a mangrove Kandelia obovata (S., L.) Yong were quantified. The estimated biomasses in leaves, branches, stems, roots, aboveground and total were 5.61 (3.68%), 28.8 (18.9%), 46.1 (30.2%), 71.8 (47.2%), 80.5 (52.8%) and 152 Mg ha−1 (100%), respectively. Stem phytomass increment per tree was estimated using allometric relationships and stem analysis. Stem volume without bark of harvested trees showed a strong allometric relationship with D 0.12 H (D 0.1, diameter at a height of one-tenth of tree height H) (R 2 = 0.924). Annual stem volume increment per tree showed a strong allometric relationship with D 0.12 H (R 2 = 0.860). Litterfall rate ranges from 3.87 to 56.1 kg ha−1 day−1 for leaves and 0.177 to 46.2 kg ha−1 day−1 for branches. Seasonal changes of litterfall rate were observed, which showed a peak during wet season (August–September). Total annual litterfall was estimated as 10.6 Mg ha−1 year−1, in which 68.2% was contributed by the leaves. The ANPP in the K. obovata stand was 29.9–32.1 Mg ha−1 year−1, which is ca. 2.8–3.0 times of annual litterfall. The growth efficiency (aboveground biomass increment/LAI) was 5.35–5.98 Mg ha−1 year−1. The low leaf longevity (9.3 months) and high growth efficiency of K. obovata makes it a highly productive mangrove species.  相似文献   

12.
Seaweeds growing in the intertidal zone are exposed to fluctuating nitrate and ultraviolet radiation (UVR) levels. While it has been shown that elevated UVR levels and the decrease of nitrate concentration can reduce photosynthetic levels in seaweeds, less is known about the combined effect of nitrate levels and UVR on metabolism and photoprotection mechanisms of intertidal species. Consequently, the objective of this study was to evaluate the effect of nitrate concentration and UVR treatments on photosynthesis, respiration, nitrate reductase activity and phenolic compound levels of Ulva rigida (Chlorophyta). There was a two- to threefold increase in maximal gross photosynthesis (GPmax) and respiration rates, as nitrate increased from 0 to 50 μM NO3. Similarly, nitrate reductase activity increased linearly from low values in algae incubated at 0 μM NO3 to high values in tissue incubated at 50 μM NO3. Phenolic compounds in the tissue of U. rigida increased approximately 60% under 50 μM NO3 relative to those incubated at 0 μM NO3. Algae exposed to UVR (8 h) showed a significant decrease in the effective quantum yield and respiration, however, no effect was observed in the phenolic compounds levels. Full recovery of effective quantum yield was observed after U. rigida was transferred for 48 h to low PAR. Nitrate reductase also decreased after an 8-h UVR exposure, but no differences were observed among the nitrate treatments. This study shows that high nitrate levels reduced the negative effect of UVR on the effective quantum yield and increased the recovery of key metabolic enzymes. It is possible that the increase of phenolic compounds in the thallus of U. rigida under high nitrate levels provide a photoprotective mechanism when exposed to high UV levels during low tides.  相似文献   

13.
Nelusetta ayraudi (the ocean leatherjacket) is an endemic Australian monacanthid species distributed from North West Cape (Western Australia) south to southern Queensland. The commercial and recreational fisheries targeting Nelusetta ayraudi have expanded substantially along the coast of New South Wales (NSW) in recent years but there exists little biological information on which to base effective management of this growing fishery. World-wide, only a few studies have aged monacanthids. Of these, researchers have interpreted periodic increments in bony structures such as vertebrae and anterior dorsal spines in preference to those found in otoliths. In this study we estimated age of N. ayraudi by counting growth increments in sectioned otoliths. The periodicity of increment formation was validated using a vital stain, (oxy-tetracycline), injected into young-of-the-year fish. Growth was rapid especially as juveniles with N. ayraudi attaining approximately 220 mm after 1 year and 340 mm after 2 years. No differences in growth rates were detected between sexes or between fish captured at different latitudes (zones). The largest male (605 mm, Total Length—TL) and female (656 mm, TL) were both recorded from northern NSW, with both sexes attaining the maximum age of 6+ years from northern and southern NSW. The von Bertalanffy parameters describing growth for N. ayraudi were L {L_\infty }  = 591 mm (TL), k = 0.377 year−1 and t o = −0.247 years.  相似文献   

14.
The reproductive cycle and gonad development of the yellow clam Mesodesma mactroides was studied over a period of 24 months (January 2005–December 2006) at the Argentinean sandy beach Santa Teresita. Histological examination of gonadal tissue revealed that sex ratios did not significantly deviate from the proportion of 1:1 and no case of hermaphroditism was found. The reproductive cycle of M. mactroides followed an annual cyclicality, which was significantly correlated to monthly mean sea surface temperatures (SST). Oocytes showed highest abundance in winter, indicating a process of gonadal development and sexual maturation. The mean oocyte size decreased significantly during spring. Modal oocyte sizes decreased significantly during winter and late spring of each year, suggesting spawning events. The condition index was not useful in describing the annual reproductive cycle of M. mactroides. Ash-free, shell-free dry mass was chosen to detect the condition of the specimens, and this significantly correlated with monthly mean SST and the gametogenic cycle. Annual recruitment patterns during summer–autumn indicated a 3-month-long planktonic phase of M. mactroides. The reproduction cycle and gonad development of M. mactroides showed only weak differences between data from the present study and those collected 40 years ago.
Marko HerrmannEmail:
  相似文献   

15.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

16.
Growth rate (linear skeleton extension) was determined in live specimens of the deep-sea cup coral Flabellum alabastrum (Anthozoa: Flabellidae) collected between 600 and 1,200 m off insular Newfoundland (eastern Canada) and kept under laboratory conditions for over 2 years. Smaller individuals grew faster (~5 mm year−1) than larger ones (~1 mm year−1). Seasonal variations in extension rates and qualitative appearance of the growth bands were recorded, with maximum extension occurring in late summer and early fall during maxima in seawater temperature, zooplankton levels, and deposition of suspended detritus. Estimates from a growth model indicate that the largest individuals of F. alabastrum (~43 mm calyx height) are at least 45 years old.  相似文献   

17.
Aspects of the biology of Abra segmentum were investigated at low salinities in a Mediterranean coastal lagoon (Monolimni Lagoon, Northern Aegean Sea). Monthly samples were collected during the period from February 1998 to January 1999. Recruitment occurred from mid-spring to early autumn (0.3–5.7 psu) and recruits grew during summer and autumn (1.2–5.7 psu), while a major part vanished during next autumn, displaying a maximum life span of about 20 months. A positive correlation was found between the percentage of individuals having a shell length of ≤3.5 mm and temperature; age group 0 showed a growth rate of 0.97 mm per month, and the largest individual collected had a 19.76 mm shell length. The population density sharply increased during late spring (0.3–1.2 psu); this increase was followed by a decline during summer and, afterwards, a gradual increase up to late autumn. Secondary production calculated by the size–frequency method gave a mean annual density (n) of 3,357 individuals m−2, a mean annual biomass (B) of 21.98 g DW m−2, an annual production (P) of 73.72 g DW m−2 and a P:B ratio of 3.35. A comparison of the present data with available data of A. segmentum populations from higher salinity habitats revealed that this bivalve in the study area showed a life history pattern similar to that of other populations of the species and a comparatively high growth rate, maximum body size, n, B, P and P:B ratio. Our findings suggest that the studied aspects of A. segmentum biology could not be markedly affected by low salinities.  相似文献   

18.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

19.
Prosopis flexuosa trees dominate woodlands in the Central Monte Desert (Mendoza, Argentina), with <200 mm rainfall, exploiting the water table recharged by Andean rivers, and also growing in dunes with no access to the water table. Prosopis woodlands were extensively logged during development of the agricultural oasis, and surface and groundwater irrigation could lower the depth of the water table in the future. We evaluated tree populations with decreasing access to the water table: valley adult trees, valley saplings, and dune adult trees, in order to assess their ecophysiological response to water table accessibility. High and seasonally stable pre-dawn leaf water potentials (−2.2 ± 0.2 to −1.2 ± 0.07 MPa) indicated that valley adults utilize larger and more stable water reservoirs than valley saplings and dune adults (−3.8 ± 0.3 to −1.3 ± 0.07 MPa), with higher midday leaf conductance to water vapor (valley adults ~250; dune adults <60 mmol m−2 s−1), potentially higher CO2 uptake, and increased radial growth rate (valley adults 4.1 ± 0.07; dune adults 2.9 ± 0.02 mm year−1). Trees with poor access to the water table exhibited drought tolerance responses such as midday stomata closure, leaflet closure, and osmotic adjustment. Stomata density decreased in response to drought when leaf expansion was restricted. The combination of phreatophytism and drought tolerance would enlarge P. flexuosa habitats and buffer populations against changes in rainfall dynamics and water table depth.  相似文献   

20.
Quantification of carbon budgets and cycling in Japanese cedar (Cryptomeria japonica D. Don) plantations is essential for understanding forest functions in Japan because these plantations occupy about 20% of the total forested area. We conducted a biometric estimate of net ecosystem production (NEP) in a mature Japanese cedar plantation beneath a flux tower over a 4-year period. Net primary production (NPP) was 7.9 Mg C ha−1 year−1 and consisted mainly of tree biomass increment and aboveground litter production. Respiration was calculated as 6.8 (soil) and 3.3 (root) Mg C ha−1 year−1. Thus, NEP in the plantation was 4.3 Mg C ha−1 year−1. In agreement with the tower-based flux findings, this result suggests that the Japanese cedar plantation was a strong carbon sink. The biometric-based NEP was higher among most other types of Japanese forests studied. Carbon sequestration in the mature plantation was characterized by a larger increment in tree biomass and lower mortality than in natural forests. Land-use change from natural forest to Japanese cedar plantation might, therefore, stimulate carbon sequestration and change the carbon allocation of NPP from an increment in coarse woody debris to an increase in tree biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号