首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
Nuclei from male Xenopus liver were digested extensively with DNase I and the residual amount of the four vitellogenin genes measured by hybridization with a moderate excess of vitellogenin cDNA. The saturation value was about twofold lower in chromatin isolated from liver cells of estrogen treated than from untreated males or from erythrocytes. Analyzing the disappearance of several defined restriction fragments specific for the A1 and A2 vitellogenin genes, after limited digestion with DNase I, suggested that the entire A1 and A2 vitellogenin genes are about twofold more sensitive to DNase I in chromatin of hepatocytes isolated from estrogen treated than from untreated males. Using the same assay no change in the DNase I sensitivity of the two vitellogenin genes in erythrocyte chromatin was observed. Analysis of the beta 1-globin and an albumin gene demonstrated that the DNase I sensitivity of these genes in both cell types is not altered by estrogen. All these data indicate that estrogen stimulation results in an increased DNase I sensitivity specific for the vitellogenin genes in hepatocytes.  相似文献   

2.
The sensitivity to DNAase (deoxyribonuclease) I (which preferentially digests transcribed sequences) of vitellogenin and albumin genes in liver and erythrocytes of male Xenopus after primary and secondary induction of vitellogenesis by oestrogen was measured by hybridization to cDNA (complementary DNA) of the residual DNA after enzymic digestion of isolated nuclei. Vitellogenin sequences were rendered selectively more sensitive to limited DNAase-I digestion (15-20% of DNA rendered acid-soluble) during primary hormonal activation (5 days) of vitellogenin genes in liver, but not erythrocyte, nuclei. Hormone withdrawal (25 days after first injection) did not result in reversion to a pre-activation gene configuration, nor did secondary hormonal stimulation (5 days after second and 25 days after first injection) augment the sensitivity of the genes to digestion by the nuclease. Similar hormone treatment did not affect the sensitivity of the constitutively expressed albumin genes in liver nuclei, nor their insensitivity in erythrocyte nuclei. Under the same conditions, globin genes remained indigestible in liver nuclei. It is concluded that primary induction of vitellogenesis in male Xenopus liver is accompanied by relatively long-lasting (3-4 weeks) change in the configuration of vitellogenin genes in hepatic nuclei which is not reversed or further modified during short-term oestrogen withdrawal or upon secondary stimulation.  相似文献   

3.
4.
Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5' flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogenin minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells. In contrast to the transfected genes, the endogenous chromosomal vitellogenin genes remain silent, demonstrating that in spite of the presence of the hER and the hormone, the conditions necessary for their activation are not fulfilled.  相似文献   

5.
6.
7.
8.
9.
The disappearance of defined restriction fragments of the beta 1-globin, an albumin and the A1 vitellogenin gene was quantitated after DNase I digestion and expressed by a sensitivity factor defined by a mathematical model. Analysis of naked DNA showed that the gene fragments have similar but not identical sensitivity factors. DNase I digestion of chromatin revealed for the same gene fragments sensitivity factors differing over a much wilder range. This is correlated to the activity of the genes analyzed: the beta 1-globin gene fragment is more sensitive to DNase I in chromatin of erythrocytes compared to hepatocytes whereas the albumin gene fragment is more sensitive to DNase I in chromatin of hepatocytes. The A1 vitellogenin gene has the same DNase I sensitivity in both cell types. Comparing the DNase I sensitivity of the three genes in their inactive state we suggest that different chromatin conformations may exist for inactive genes.  相似文献   

10.
11.
12.
13.
14.
This study was performed to improve the purification of Xenopus vitellogenin and establish the radioimmunoassay. The procedure of purification consisted of ammonium precipitation, DEAE-Sephadex chromatography and Sephadex G-200 gel chromatography. Using this procedure, 934 mg vitellogenin was purified from 49 ml of estradiol treated female Xenopus plasma (about 19 mg/ml). Vitellogenins purified from male and female plasma after a single injection of estradiol showed good correspondence in electrophoretic patterns and amino acid compositions, indicating that vitellogenin synthesis in the male occurs in four different genes as in the female. The radioimmunoassay for vitellogenin was established using an antibody in the plasma obtained from rabbits injected with purified Xenopus female vitellogenin. The titer was 20,000 times dilution of the plasma, and the minimum detectable amount of vitellogenin was 0.1 microgram. The cross-reactivity of this antibody with newt vitellogenin was about 65% and that of chick 6%. The cross-reaction was also observed in female bullfrog plasma. Vitellogenin content was increased gradually during the first 6 days after injection of estradiol in female and the elevated level of vitellogenin dropped afterward.  相似文献   

15.
16.
17.
18.
19.
We have used ammonium sulphate precipitation followed by affinity chromatography to partially purify the estrogen receptor from Xenopus laevis liver which may control the genes for vitellogenin, the precursor of the egg yolk proteins. The rate at which receptor binds estradiol explains the kinetics of the induction of vitellogenin synthesis by estradiol, and the dissociation constant (0.5 X 10(-9) M) explains the concentration dependence of the response, which has a threshold of 10(-9) M estradiol, when 67% of the receptor is bound to estradiol. The estradiol concentration in male liver, which does not make vitellogenin, is 0.18 X 10(-9) M, sufficient to saturate 26% of the receptor, while in female liver, which makes vitellogenin continuously, the estradiol concentration is 3.5 X 10(-9) M, giving 88% saturation of receptor, suggesting that the proportion of occupied receptor decides whether or not the vitellogenin genes are active. In the physiological concentration range, estradiol modulates the level of receptor, which varies between 100 binding sites per nucleus in males and 440 in females, but artificially high concentrations of estradiol raise the level to approximately 1000 sites per nucleus. This suggests that the small increase in vitellogenin mRNA induced by physiological concentrations of estradiol is due to pre-existing receptor and that the much larger increases induced by very high concentrations depends on newly-synthesized receptor.  相似文献   

20.
From livers of estrogen-stimulated female Xenopus toads, large quantities of estrogen-induced, poly(A)-containing RNA could be isolated, showing the same characteristics as vitellogenin mRNA obtained from hormone-treated males.Using cDNA hybridization, vitellogenin mRNA was monitored in the cytoplasmic poly(A)-containing RNA of the liver of male toads during 13 days of primary and the initial phase of secondary stimulation with estrogen.During primary stimulation, low amounts of vitellogenin mRNA, not exceeding 0.18% of the cytoplasmic poly(A)-containing RNA, were first detected after 12 hr of hormone treatment, and vitellogenin mRNA was found to increase on the average to 34% of the cytoplasmic poly(A)-containing RNA on the seventh day of hormone treatment. After 3 days of primary stimulation, accumulation of vitellogenin mRNA leveled off, showing no significant increase in the cytoplasm up to 13 days of hormone treatment. As judged from incorporation of 32PO4 into blood plasma proteins of males during primary stimulation, vitellogenin was first detected after 1 day, and its synthesis was found to increase dramatically until the thirteenth day of hormone treatment. This implies that there is a coincidence between appearance and extent of synthesis of vitellogenin and the abundance of vitellogenin mRNA in the cytoplasm, but there is evidence that during later phase of primary stimulation (day 3–13), the increase in synthesis of vitellogenin cannot be attributed anymore to a significant accumulation of vitellogenin mRNA.In male Xenopus, estrogen-induced synthesis of vitellogenin is no more detectable 41 days after hormone injection, and the concentration of vitellogenin mRNA was found to be <0.03% of the cytoplasmic poly(A)-containing RNA. Secondary stimulation by estrogen of these animals results in an at least 30 fold faster accumulation of vitellogenin mRNA in the cytoplasm within the initial 12 hr of hormone treatment. This may explain the faster appearance of vitellogenin in the blood plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号