首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied whether bronchodilatation occurs with exercise during the late asthmatic reaction (LAR) to allergen (group 1, n = 13) or natural asthma (NA; group 2, n = 8) and whether this is sufficient to preserve maximum ventilation (VE(max)), oxygen consumption (VO(2 max)), and exercise performance (W(max)). In group 1, partial forced expiratory flow at 30% of resting forced vital capacity increased during exercise, both at control and LAR. W(max) was slightly reduced at LAR, whereas VE(max), tidal volume, breathing frequency, and VO(2 max) were preserved. Functional residual capacity and end-inspiratory lung volume were significantly larger at LAR than at control. In group 2, partial forced expiratory flow at 30% of resting forced vital capacity increased greatly with exercise during NA but did not attain control values after appropriate therapy. Compared with control, W(max) was slightly less during NA, whereas VO(2 max) and VE(max) were similar. Functional residual capacity, but not end-inspiratory lung volume at maximum load, was significantly greater than at control, whereas tidal volume decreased and breathing frequency increased. In conclusion, remarkable exercise bronchodilation occurs during either LAR or NA and allows VE(max) and VO(2 max) to be preserved with small changes in breathing pattern and a slight reduction in W(max).  相似文献   

2.
Mammalian alveoli, complex architectural and cellular units with dimensions that are linked to the organism's O2 consumption (VO2), are thought to be destroyed only by disease and not to spontaneously regenerate. Calorie restriction of adult mammals lowers VO2, and ad libitum refeeding returns VO2 to pre-calorie-restriction values. We took advantage of these relationships and tested the hypothesis in adult mice that calorie restriction (two-thirds reduction for 2 wk) followed by ad libitum refeeding (3 wk) would cause alveolar destruction and regeneration, respectively. Calorie restriction diminished alveolar number 55% and alveolar surface area 25%. Refeeding fully reversed these changes. Neither manipulation altered lung volume. Within 72 h, calorie restriction increased alveolar wall cell apoptosis and diminished lung DNA (approximately 20%). By 72 h of refeeding, alveolar wall cell replication increased and lung DNA rose to amounts in mice that were never calorie restricted. We conclude that adult mice have endogenous programs to destroy and regenerate alveoli, thereby raising the danger of inappropriate activation but the possibility of therapeutic induction, if similar programs exist in humans.  相似文献   

3.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

4.
When a subject breathes against an inspiratory resistance, the inspiratory pressure, the inspiratory flow, and the lung volume at which the breathing task takes place all interact to determine the length of time the task can be sustained (Tlim). We hypothesized that the mechanism actually limiting tasks in which these parameters were varied involved the rate of energy utilization by the inspiratory muscles. To test this hypothesis, we studied four experienced normal subjects during fatiguing breathing tasks performed over a range of pressures and flows and at two different lung volumes. We assessed energy utilization by measuring the increment in the rate of whole body O2 consumption due to the breathing task (VO2 resp). Power and mean esophageal pressure correlated with Tlim but depended also on lung volume and inspiratory flow rate. In contrast, VO2 resp closely correlated with Tlim, and this relationship was not systematically altered by inspiratory flow or lung volume. The shape of the VO2 resp vs. Tlim curve was approximately hyperbolic, with high rates of VO2 resp associated with short endurance times and lower rates of VO2 resp approaching an asymptotic value at high Tlim. These findings are consistent with a mechanism whereby a critical rate of energy utilization determines the endurance of the inspiratory pump, and that rate varies with pressure, flow, and lung volume.  相似文献   

5.
We examined the relationship between the pressure-time product (Pdt) of the inspiratory muscles and the O2 cost of breathing (VO2 resp) in five normal subjects breathing through an external inspiratory resistance with a tidal volume of 800 ml at a constant end-expiratory lung volume [functional residual capacity, (FRC)]. Each subject performed 30-40 runs, each of approximately 30 breaths, with inspiratory flow rates ranging from 0.26 +/- 0.01 to 0.89 +/- 0.04 l/s (means +/- SE) and inspiratory mouth pressures ranging from 10 +/- 1 to 68 +/- 4% of the maximum inspiratory pressure at FRC. In all subjects VO2 resp was linearly related to Pdt when mean inspiratory flow (VI) was constant, but the slope of this relationship increased with increasing VI. Therefore, Pdt is an accurate index of VO2 resp only when VI is constant. There was a linear relationship between the VO2 resp and the work rate across the external resistance (W) for all runs in each subject over the range of W 10 +/- 1 to 137 +/- 21 J/min. Thus, at a constant tidal volume the VO2 resp was related to the mean inspiratory pressure, independent of flow or inspiratory duration. If the VO2 resp were determined mainly during inspiration, then for a given rate of external work or O2 consumption, VI would be inversely related to mean inspiratory pressure. Efficiency (E) was 2.1 +/- 0.2% and constant over a large range of VI, pressure, work rate, or resistance and was not altered by the presence of a potentially fatiguing load. The constant E over such a wide range of conditions implies a complex integration of the recruitment, mechanical function, and energy consumption of the muscles utilized in breathing.  相似文献   

6.
Lung volumes, oxygen uptake (VO2), end-tidal PO2, and PCO2, diffusing capacity of the lungs for CO (DLCO), pulmonary blood flow (QL) and respiratory frequency were measured in the green sea turtle (Chelonia mydas) (49-127 kg body wt). Mean lung volume (VL) determined from helium dilution was 57 ml/kg and physiological dead space volume (VD) was about 3.6 ml/kg. QL, determined from acetylene uptake during rebreathing, increased in proportion to VO2 with temperature. Therefore, constant O2 content difference was maintained between pulmonary arterial and venous blood. DLCO, measured using a rebreathing technique, was 0.04 ml X kg-1 X min-1 X Torr-1 at 25 degrees C. Several cardiopulmonary characteristics in C. mydas are advantageous to diving: large tidal volume relative to functional residual capacity promotes fast exchange of the alveolar gas when the turtle surfaces for breathing: and the concomitant rise of pulmonary blood flow and O2 uptake with temperature assures efficient O2 transport regardless of wide temperature variations encountered during migrations.  相似文献   

7.
The entire alveolar surface is lined by a thin fluid continuum. As a consequence, surface forces at the air-liquid interface are operative, which in part are transmitted to the delicate lung tissue. Morphologic and morphometric analyses of lungs show that the alveolar surface forces exert a moulding effect on alveolar tissue elements. In particular, in lungs at low degrees of inflation, equivalent to the volume range of normal breathing, there is a derecruitment of alveolar surface area with increasing surface tensions which reflects equilibrium configurations of peripheral air spaces where the sum of tissue energy and surface energy is minimum. Thus, changes in surface tension alter the recoil pressure of the lung directly and indirectly by deforming lung tissue and hence changing tissue tensions. However, the interplay between tissue and surface forces is rather complex, and there is a marked volume dependence of the shaping influence of surface forces. With increasing lung volumes the tissue forces transmitted by the fiber scaffold of the lung become the predominant factor of alveolar micromechanics: at lung volumes of 80% total lung capacity or more, the alveolar surface area-volume relation is largely independent of surface tension. Most important, within the range of normal breathing, the surface tension, its variations and the associated variations in surface area are small. The moulding power of surface forces also affects the configuration of capillaries, and hence the microcirculation, of free cellular elements such as the alveolar macrophages beneath the surface lining layer, and of the surfaces of the peripheral airways. Still enigmatic is the coupling mechanism between the fluid continua of alveoli and airways which might also be of importance for alveolar clearance. As to the surface active lining layer of peripheral air spaces, which determines alveolar surface tension, its structure and structure-function relationship are still ill-defined owing to persisting problems of film preservation and fixation. Electron micrographs of alveolar tissue, of lining layers of captive bubbles, and scanning force micrographs of surfactant films transferred on mica plates reveal a complex structural pattern which precludes so far the formulation of an unequivocal hypothesis.  相似文献   

8.
Respiratory adaptation to chronic hypoxia in newborn rats   总被引:2,自引:0,他引:2  
Newborn rats were maintained in an hypoxic chamber (10% O2 in N2) from the day of birth up to 2 wk of postnatal life. Body weight (BW) and nose-tail length were less in the hypoxic exposed (H) rats than in control (C) animals growing in air. Hematocrit rose from about 37% to about 51%. Oxygen consumption (VO2), measured with a manometric method, was lower in H than in C rats; the difference remained at 5-7 days even after normalization by BW. At 5-7 days ventilation, measured with an airflow plethysmograph, was much more elevated in H rats (whether breathing 10% O2 or air) than in C rats, with an increase in both tidal volume and frequency. This indicates that the biphasic ventilatory response, characterized by an initial rise and then a fall of ventilation toward normoxic values, commonly observed in newborns during acute hypoxic challenge is an immediate but only transient response. The dry lung weight-to-BW ratio and alveolar size were larger in H than in C rats. Lung volumes at 20 cmH2O were similar, despite the smaller BW of the H rats. Hence, in the rat, chronic hypoxia in the immediate postnatal period increases O2-carrying capacity, decreases metabolic demands, increases alveolar O2 availability, and promotes structural changes in the lung that protect the gas exchange area and optimize the structure-function relationship of the lung. These results may also suggest that the lung structural alterations with chronic hypoxia should not be attributed to changes in VO2 but, eventually, to the ventilatory action of the organ.  相似文献   

9.
The formation of pulmonary alveoli in mice and rats by subdivision of alveolar saccules that constitute the newborn's gas-exchange region ends by approximately postnatal day 14. However, alveoli continue to form after age 14 days until age approximately 40 days by means other than septation of the saccules present at birth. With the use of morphometric procedures and retinoic acid receptor (RAR)-alpha+/+ and RAR-alpha-/- mice, we now show the volume of individual alveoli (va), the number of alveoli (Na), and alveolar surface area (Sa) are the same in 14-day-old RAR-alpha+/+ and RAR-alpha-/- mice. However, at age 50 days, va is larger, and Na and Sa are smaller, in RAR-alpha-/- than in RAR-alpha+/+ mice, although total lung volume is the same in both groups. These findings, and prior data showing RAR-beta is an endogenous inhibitor of alveolus formation during, but not after, the perinatal period, indicate there are developmental period-specific regulators of alveolus formation and that total lung volume and alveolar dimensions may have different regulators.  相似文献   

10.
The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (Sa(O2)) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and Sa(O2) during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (VO2), expired minute ventilation (VE), and Sa(O2) were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2 (VE/VO2) and Sa(O2) during submaximal exercise. There were significant correlations among the changes in HVR at rest and in VE/VO2 and Sa(O2) during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.  相似文献   

11.
To quantify the inhomogeneity of alveolar pressures (PA) during cyclic changes in lung volume similar to those present during spontaneous breathing, inhomogeneity of PA was measured with an alveolar capsule technique in six excised canine lungs. The lungs were ventilated by a quasi-sinusoidal pump with a constant end-expiratory lung volume and tidal volumes of 10, 20, and 40% of vital capacity at breathing frequencies ranging from 5 to 45 breaths/min. Inhomogeneity of PA was quantified as the sample standard deviation of pressures measured in three capsules. A component of inhomogeneity in phase with flow and a smaller component out of phase with flow were present. The in-phase component increased approximately linearly with flow. The ratio of inhomogeneity to flow was smaller at large tidal volumes and, at the two higher tidal volumes studied, the ratio was greater during inspiration than during expiration. If these data are interpreted in terms of a simple circuit model, this degree of inhomogeneity implies an approximately twofold variation in regional time constants. Despite these considerable differences in time constants, the absolute amount of inhomogeneity as defined by the sample standard deviation of the three PA's was small (maximum 0.57 +/- 0.32 cmH2O at the highest breathing frequency and tidal volume) because airway resistance in the canine lung was small.  相似文献   

12.
We examined the combined effect of an increase in inspiratory flow rate and frequency on the O2 cost of inspiratory resistive breathing (VO2 resp). In each of three to six pairs of runs we measured VO2 resp in six normal subjects breathing through an inspiratory resistance with a constant tidal volume (VT). One of each pair of runs was performed at an inspiratory muscle contraction frequency of approximately 10/min and the other at approximately 30/min. Inspiratory mouth pressure was 45 +/- 2% (SE) of maximum at the lower contraction frequency and 43 +/- 2% at the higher frequency. Duty cycle (the ratio of contraction time to total cycle time) was constant at 0.51 +/- 0.01. However, during the higher frequency runs, two of every three contractions were against an occluded airway. Because VT and duty cycle were kept constant, mean inspiratory flow rate increased with frequency. Careful selection of appropriate parameters allowed the pairs of runs to be matched both for work rate and pressure-time product. The VO2 resp did not increase, despite approximately threefold increases in both inspiratory flow rate and contraction frequency. On the contrary, there was a trend toward lower values for VO2 resp during the higher frequency runs. Because these were performed at a slightly lower mean lung volume, a second study was designed to measure the VO2 resp of generating the same inspiratory pressure (45% maximum static inspiratory mouth pressure at functional residual capacity) at the same frequency but at two different lung volumes. This was achieved with a negligibly small work rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To determine the sensitivity of pulmonary resistance (RL) to changes in breathing frequency and tidal volume, we measured RL in intact anesthetized dogs over a range of breathing frequencies and tidal volumes centering around those encountered during quiet breathing. To investigate mechanisms responsible for changes in RL, the relative contribution of airway resistance (Raw) and tissue resistance (Rti) to RL at similar breathing frequencies and tidal volumes was studied in six excised, exsanguinated canine left lungs. Lung volume was sinusoidally varied, with tidal volumes of 10, 20, and 40% of vital capacity. Pressures were measured at three alveolar sites (PA) with alveolar capsules and at the airway opening (Pao). Measurements were made during oscillation at five frequencies between 5 and 45 min-1 at each tidal volume. Resistances were calculated by assuming a linear equation of motion and submitting lung volume, flow, Pao, and PA to a multiple linear regression. RL decreased with increasing frequency and decreased with increasing tidal volume in both isolated and intact lungs. In isolated lungs, Rti decreased with increasing frequency but was independent of tidal volume. Raw was independent of frequency but decreased with tidal volume. The contribution of Rti to RL ranged from 93 +/- 4% (SD) with low frequency and large tidal volume to 41 +/- 24% at high frequency and small tidal volume. We conclude that the RL is highly dependent on breathing frequency and less dependent on tidal volume during conditions similar to quiet breathing and that these findings are explained by changes in the relative contributions of Raw and Rti to RL.  相似文献   

14.
The method of Green's functions is applied to the convection-diffusion equation describing gas transport in the human lung. Explicit analytic solutions are found for the zeroth approximation to the value of steady state alveolar oxygen concentration, given the frequency of breathing, tidal volume, oxygen consumption, alveolar volume, volume of the bronchial tree, and two modelling parameters describing the geometry. The results of the calculation are compared favorably with some experimental data.  相似文献   

15.
In six normal male subjects we compared the O2 cost of resistive breathing (VO2 resp) between equivalent external inspiratory (IRL) and expiratory loads (ERL) studied separately. Each subject performed four pairs of runs matched for tidal volume, breathing frequency, flow rates, lung volume, pressure-time product, and work rate. Basal O2 uptake, measured before and after pairs of loaded runs, was subtracted from that measured during resistive breathing to obtain VO2 resp. For an equivalent load, the VO2 resp during ERL (184 +/- 17 ml O2/min) was nearly twice that obtained during IRL (97 +/- 9 ml O2/min). This twofold difference in efficiency between inspiratory and expiratory resistive breathing may reflect the relatively lower mechanical advantage of the expiratory muscles in overcoming respiratory loads. Variable recruitment of expiratory muscles may explain the large variation of results obtained in studies of respiratory muscle efficiency in normal subjects.  相似文献   

16.
To determine alveolar pressure-volume relationships, alveolar three-dimensional reconstructions were prepared from lungs fixed by vascular perfusion at various points on the pressure-volume curve. Lungs from male Sprague-Dawley rats were fixed by perfusion through the pulmonary artery following a pressure-volume maneuver to the desired pressure point on either the inflation or deflation curve. Tissue samples from lungs were serially sectioned for determination of the volume fraction of alveoli and alveolar ducts and reconstruction of alveoli. Alveoli from lungs fixed at 5 cmH2O on the deflation curve (approximating functional residual volume) had a volume of 173 X 10(3) microns3, a surface area of 11,529 microns2, a mouth opening diameter of 72.7 microns, and a mean caliper diameter of 91.8 micron (SE). Alveolar shape changes during deflation from total lung capacity to residual volume was first (30 to 10 cmH2O) associated with little change in the diameter of the alveoli (102.7 +/- 2.4 to 100.3 +/- 3.3 microns). In the range overlapping normal breathing (10 to 0 cmH2O) there was a substantial decrease in diameter (100.3 +/- 3.3 to 43.3 +/- 2.3 microns). These measurements and others made on the relative changes in the dimensions of the alveolus suggest that the elastic network, particularly around the alveolar ducts, are predominant in determining lung behavior near the volume expansion limits of the lung while the elastic and surface tension properties of the alveoli are predominant in the volume range around functional residual capacity.  相似文献   

17.
Current emphasis on translational application of genetic models of lung disease has renewed interest in the measurement of the gravimetric filtration coefficient (K(f)) as a means to assess vascular permeability changes in isolated perfused lungs. The K(f) is the product of the hydraulic conductivity and the filtration surface area, and is a sensitive measure of vascular fluid permeability when the pulmonary vessels are fully recruited and perfused. We have observed a remarkable consistency of the normalized baseline K(f) values between species with widely varying body weights from mice to sheep. Uniformity of K(f) values can be attributed to the thin alveolar capillary barrier required for gas exchange and the conserved matching of lung vascular surface area to the oxygen requirements of the body mass. An allometric correlation between the total lung filtration coefficient (K(f,t)) and body weight in several species (r(2)=1.00) had a slope that was similar to those reported for alveolar and pulmonary capillary surface areas and pulmonary diffusion coefficients determined by morphometric methods in these species. A consistent K(f) is dependent on accurately separating the filtration and vascular volume components of lung weight gain, then K(f) is a consistent and repeatable index of lung vascular permeability.  相似文献   

18.
The purpose of this study was to examine the interactions of adaptations in O2 transport and utilization under conditions of altered arterial O2 content (CaO2), during rest to exercise transitions. Simultaneous measures of alveolar (VO2alv) and leg (VO2mus) oxygen uptake and leg blood flow (LBF) responses were obtained in normoxic (FiO2 (inspired fraction of O2) = 0.21), hypoxic (FiO2 = 0.14), and hyperoxic (FiO2 = 0.70) gas breathing conditions. Six healthy subjects performed transitions in leg kicking exercise from rest to 48 +/- 3 W. LBF was measured continuously with pulsed and echo Doppler ultrasound methods, VO2alv was measured breath-by-breath at the mouth and VO2mus was determined from LBF and radial artery and femoral vein blood samples. Even though hypoxia reduced CaO2 to 175.9 +/- 5.0 from 193.2 +/- 5.0 mL/L in normoxia, and hyperoxia increased CaO2 to 205.5 +/- 4.1 mL/L, there were no differences in the absolute values of VO2alv or VO2mus across gas conditions at any of the rest or exercise time points. A reduction in leg O2 delivery in hypoxia at the onset of exercise was compensated by a nonsignificant increase in O2 extraction and later by small increases in LBF to maintain VO2mus. The dynamic response of VO2alv was slower in the hypoxic condition; however, hyperoxia did not affect the responses of oxygen delivery or uptake at the onset of moderate intensity leg kicking exercise. The finding of similar VO2mus responses at the onset of exercise for all gas conditions demonstrated that physiological adaptations in LBF and O2 extraction were possible, to counter significant alterations in CaO2. These results show the importance of the interplay between O2 supply and O2 utilization mechanisms in meeting the challenge provided by small alterations in O2 content at the onset of this submaximal exercise task.  相似文献   

19.
Female rats and mice have smaller and, per body mass (BM), more alveoli and alveolar surface area (Sa) than males of their respective species. This sexual dimorphism becomes apparent about the time of sexual maturity. It is prevented in rats (not tested in mice) by ovariectomy at age 3 wk. In female mice, estrogen receptor (ER)-alpha and ER-beta are required for formation of alveoli of appropriate size and number. We now report the average volume of an alveolus (va) and the number of alveoli per body mass (Na/BM) were not statistically different between ER-alpha(-/-) and wild type (wt) males. However, the combination of a larger value for va and a smaller value for Na/BM, though neither parameter achieved a statistically significant intergroup difference, resulted in a statistically significant lower Sa/BM in ER-alpha(-/-) males compared with wt males. In ER-beta(-/-) males, va was bigger and Na/BM and Sa/BM were lower compared with wt males. Wt males had larger alveoli and lower Na/BM and Sa/BM than wt females. The wt sexual dimorphism of va, Na/BM, and Sa/BM was absent in ER-alpha(-/-) mice. Alveolar size did not differ between ER-beta(-/-) females and males but Na/BM and Sa/BM were greater in ER-beta(-/-) females than in ER-beta(-/-) males. The results in male mice, with prior findings in female mice, 1) demonstrate estrogen receptors have a smaller effect on alveolar dimensions in male than female mice, 2) show ER-alpha and ER-beta are required for the sexual dimorphism of alveolar size, and 3) show ER-alpha is needed for the sexual dimorphism of body mass-specific alveolar number and surface area.  相似文献   

20.
The purpose of this study was to examine the influence of time run at maximal oxygen uptake (VO2 max) on the off-transient pulmonary oxygen uptake phase after supra-lactate threshold runs. We hypothesised: 1) that among the velocities eliciting VO2 max there is a velocity threshold from which there is a slow component in the VO2-off transient, and 2) that at this velocity the longer the duration of this time at VO2 max (associated with an accumulated oxygen kinetics since VO2 can not overlap VO2 max), the longer is the off-transient phase of oxygen uptake kinetics. Nine long-distance runners performed five maximal tests on a synthetic track (400 m) while breathing through the COSMED K4b2 portable, telemetric metabolic analyser: i) an incremental test which determined VO2 max, the minimal velocity associated with VO2 max (vVO2 max) and the velocity at the lactate threshold (vLT), ii) and in a random order, four supra-lactate threshold runs performed until exhaustion at vLT + 25, 50, 75 and 100% of the difference between vLT and vVO2 max (vdelta25, vdelta50, vdelta75, vdelta100). At vdelta25, vdelta50 (= 91.0 +/- 0.9% vVO2 max) and vdelta75, an asymmetry was found between the VO2 on (double exponential) and off-transient (mono exponential) phases. Only at vdelta75 there was at positive relationship between the time run at VO2 max (%tlimtot) and the VO2 recovery time constant (Z = 1.8, P = 0.05). In conclusion, this study showed that among the velocities eliciting VO2 max, vdelta75 is the velocity at which the longer the duration of the time at VO2 max, the longer is the off-transient phase of oxygen uptake kinetics. It may be possible that at vdelta50 there is not an accumulated oxygen deficit during the plateau of VO2 at VO2 max and that the duration of the time at VO2 max during the exhaustive runs at vdelta100, could be too short to induce an accumulating oxygen deficit affecting the oxygen recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号