首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC 1.6.99.7) catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) to 10(7) M(-1) s(-1). In agreement with a previously proposed scheme of two-step four-electron reduction of nitroaromatics by NR (Koder, R. L., and Miller, A.-F. (1998) Biochim. Biophys. Acta 1387, 395-405), 2 mol NADH per mole mononitrocompound were oxidized. An oxidation of excess NADH by polinitrobenzenes, including explosives 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), has been observed as a slower secondary process, accompanied by O2 consumption. This type of "redox cycling" was not related to reactions of nitroaromatic anion-radicals, but was caused by the autoxidation of relatively stable reaction products. The initial reduction of tetryl and other polinitrophenyl-N-nitramines by E. cloacae NR was analogous to a two-step four-electron reduction mechanism of TNT and other nitroaromatics. The logs kcat/Km of all the compounds examined exhibited parabolic dependence on their enthalpies of single-electron or two-electron (hydride) reduction, obtained by quantum mechanical calculations. This type of quantitative structure-activity relationship shows that the reactivity of nitroaromatics towards E. cloacae nitroreductase depends mainly on their hydride accepting properties, but not on their particular structure, and does not exclude the possibility of multistep hydride transfer.  相似文献   

2.
Nitroaromatic explosives like 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methyl-nitramine (tetryl) comprise an important group of toxic environmental pollutants, whose toxicity is mainly attributed to the flavoenzyme electrontransferase-catalyzed redox cycling of their free radicals (oxidative stress) and DT-diaphorase [NAD(P)H:quinone oxidoreductase, NQO1, EC 1. 6.99.2]-catalyzed formation of alkylating nitroso and/or hydroxylamine metabolites. Because of the incomprehensive data on the immunotoxic effects of nitroaromatic explosives, we have studied the structure-cytotoxicity relationships in the action of tetryl, TNT as well as its amino and hydroxylamino metabolites, and related nitroaromatic compounds towards mouse splenocyte cells. The protective effects of desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine against the cytotoxicity of TNT and other nitroaromatics showed that the oxidative stress-type cytotoxicity mechanism takes place. In addition, the cytotoxicity of nitroaromatics is also partly prevented by an inhibitor of NQO1, dicumarol. The cytotoxicity of the amino metabolites of TNT is also partly prevented by alpha-naphthoflavone and isoniazide, which points to the involvement of cytochromes P-450 in their activation. In general the cytotoxicity of nitroaromatics in splenocytes increases with an increase in their single-electron reduction potential, E1(7). This points to the prevailing mechanism of the oxidative stress-type cytotoxicity. The obtained structure-activity relationship and the studies of other mammalian cell lines showed that the immunotoxic potential of nitroaromatic explosives may decrease in the order tetryl > or = TNT > or = hydroxylamino metabolites of TNT > amino and diamino metabolites of TNT.  相似文献   

3.
The mechanisms of cytotoxicity of polynitroaromatic explosives, an important group of environmental pollutants, remain insufficiently studied so far. We have found that the rate constants of single-electron enzymatic reduction, and the enthalpies of single-electron reduction of nitroaromatic compounds (DeltaHf(ArNO(2)(-*)), obtained by quantum mechanical calculation, may serve as useful tools for the analysis of cytotoxicity of nitroaromatic explosives with respect to the possible involvement of oxidative stress. The single-electron reduction rate constants of a number of explosives including 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), and model nitroaromatic compounds by ferredoxin:NADP(+) reductase (FNR, EC 1.18.1.2) and NADPH:cytochrome P-450 reductase (P-450R, EC 1.6.2.4) increased with a decrease in DeltaHf(ArNO(2)(-*)). This indicates that the reduction rates are determined by the electron transfer energetics, but not by the particular structure of the explosives. The cytotoxicity of explosives to bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) increased with a corresponding increase in their reduction rate constant by P-450R and FNR, or with a decrease in their DeltaHf(ArNO(2)(-*)). This points to an importance of oxidative stress in the toxicity of explosives in this cell line, which was further evidenced by the protective effects of desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine, and an increase in lipid peroxidation. DT-diaphorase (EC 1.6.99.2) exerted a minor and equivocal role in the cytotoxicity of explosives to FLK cells.  相似文献   

4.
The toxicity of 2,4,6-trinitrotoluene (TNT), a widespread environmental contaminant, is exerted through its enzymatic redox cycling and/or covalent binding of its reduction products to proteins and DNA. In this study, we examined the possibility of another cytotoxicity mechanism of the amino- and hydroxylamino metabolites of TNT, their flavoenzyme-catalyzed redox cycling. The above compounds acted as redox-cycling substrates for single-electron transferring NADPH:cytochrome P-450 reductase (P-450R) and ferredoxin:NADP(+) reductase (FNR), as well as substrates for the two-electron transferring flavoenzymes rat liver NAD(P)H:quinone oxidoreductase (NQO1) and Enterobacter cloacae NAD(P)H:nitroreductase (NR). Their reactivity in P-450R-, FNR-, and NR-catalyzed reactions increased with an increase in their single-electron reduction potential (E(1)(7)) or the decrease in the enthalpy of free radical formation. The cytotoxicity of the amino- and hydroxylamino metabolites of TNT towards bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) was partly prevented by the antioxidant N,N'-diphenyl-p-phenylene diamine and desferrioxamine, and potentiated by 1,3-bis-(2-chloroethyl)-1-nitrosourea, thus pointing to the involvement of oxidative stress. In general, their cytotoxicity increased with an increase in their electron accepting properties, or their reactivity towards the single-electron transferring FNR and P-450R. Thus, our data imply that the flavoenzyme-catalyzed redox cycling of amino and hydroxylamino metabolites of TNT may be an important factor in their cytotoxicity.  相似文献   

5.
The toxicity of conventional nitroaromatic explosives like 2,4,6-trinitrotoluene (TNT) is caused by their enzymatic free radical formation with the subsequent oxidative stress, the formation of alkylating nitroso and/or hydroxylamino metabolites, and oxyhemoglobin oxidation into methemoglobin. In order to get an insight into the mechanisms of toxicity of the novel explosives NTO (5-nitro-1,2,4-triazol-3-one) and ANTA (5-nitro-1,2,4-triazol-3-amine), we examined their reactions with the single-electron transferring flavoenzymes NADPH: cytochrome P-450 reductase and ferredoxin:NADP+ reductase, two-electron transferring flavoenzymes mammalian NAD(P)H:quinone oxidoreductase (DT-diaphorase), and Enterobacter cloacae NAD(P)H:nitroreductase, and their reactions with oxyhemoglobin. The reactivity of NTO and ANTA in the above reactions was markedly lower than that of TNT. The toxicity of NTO and ANTA in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) was partly prevented by desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine, and potentiated by 1,3-bis-(2-chloroethyl)-1-nitrosourea. This points to the involvement of oxidative stress in their cytotoxicity, presumably to the redox cycling of free radicals. The FLK cell line cytotoxicity and the methemoglobin formation in isolated human erythrocytes of NTO and ANTA were also markedly lower than those of TNT, and similar to those of nitrobenzene. Taken together, our data demonstrate that the low toxicity of nitrotriazole explosives may be attributed to their low electron-accepting properties.  相似文献   

6.
The mechanisms of cytotoxicity of polynitroaromatic explosives, an important group of environmental pollutants, remain insufficiently studied so far. We have found that the rate constants of single-electron enzymatic reduction, and the enthalpies of single-electron reduction of nitroaromatic compounds (ΔHf(ArNO2−⋅)), obtained by quantum mechanical calculation, may serve as useful tools for the analysis of cytotoxicity of nitroaromatic explosives with respect to the possible involvement of oxidative stress. The single-electron reduction rate constants of a number of explosives including 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), and model nitroaromatic compounds by ferredoxin:NADP+ reductase (FNR, EC 1.18.1.2) and NADPH:cytochrome P-450 reductase (P-450R, EC 1.6.2.4) increased with a decrease in ΔHf(ArNO2−⋅). This indicates that the reduction rates are determined by the electron transfer energetics, but not by the particular structure of the explosives. The cytotoxicity of explosives to bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) increased with a corresponding increase in their reduction rate constant by P-450R and FNR, or with a decrease in their ΔHf(ArNO2−⋅). This points to an importance of oxidative stress in the toxicity of explosives in this cell line, which was further evidenced by the protective effects of desferrioxamine and the antioxidant N,N′-diphenyl-p-phenylene diamine, and an increase in lipid peroxidation. DT-diaphorase (EC 1.6.99.2) exerted a minor and equivocal role in the cytotoxicity of explosives to FLK cells.  相似文献   

7.
With an aim to understand the toxicity mechanisms of the explosive 4,6-dinitro- benzofuroxan (DNBF), we studied its single-electron reduction by NADPH:cytochrome P450 reductase and ferredoxin:NADP(+) reductase, and two- electron reduction by DT-diaphorase and Enterobacter cloacae nitroreductase. The enzymatic reactivities of DNBF and another explosive 2,4,6-trinitrotoluene (TNT) were similar, except for the much lower reactivity of DNBF towards nitroreductase. DNBF was less cytotoxic in FLK cells than TNT. However, their action shared the same mechanisms, oxidative stress and activation by DT-diaphorase. The lower cytotoxicity of DNBF may be explained by the negative electrostatic charge of its adduct with water which may impede cellular membrane penetration, and by the formation of its less reactive adducts with intracellular reduced glutathione.  相似文献   

8.
Past production and handling of munitions has resulted in soil contamination at various military facilities. Depending on the concentrations present, these soils pose both a reactivity and toxicity hazard and the potential for groundwater contamination. Many munitions-related chemicals have been examined for mutagenicity in the Ames test, but because the metabolites may be present in low environmental concentrations, a more sensitive method is needed to elucidate the associated mutagenicity. RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), TNT (2,4,6-trinitrotoluene), tetryl (N-methyl-N-2,4,6-tetranitroaniline), TNB (1,3,5-trinitrobenzene) and metabolites were examined for mutagenicity in a microsuspension modification of the Salmonella histidine reversion assay with and without metabolic activation. TNB and tetryl were positive in TA98 (32.5, 5.2revertants/nmole) and TA100 (7.4, 9.5revertants/nmole) without metabolic activation and were more potent than TNT (TA98, 0.3revertants/nmole; TA100, 2.4revertants/nmole). With the exception of the tetranitroazoxytoluene derivatives, TNT metabolites were less mutagenic than TNT. RDX and two metabolites were negative in both strains, however, hexahydro-1,3,5-trinitroso-1,3,5-triazine was positive in TA100 with and without S9. Microsuspension bioassay results tend to correlate well with published Ames test data, however, there are discrepancies among the published data sets and the microsuspension assay results.  相似文献   

9.
Enterobacter cloacae NAD(P)H:nitroreductase catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) M(-1) s(-1) to 10(7) M(-1) s(-1), and oxidizing 2 moles NADH per mole mononitrocompound. Oxidation of excess NADH by polynitrobenzenes including explosives 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), has been observed as a slower secondary process, accompanied by O2 consumption. This type of 'redox cycling' was not related to reactions of nitroaromatic anion-radicals, but was caused by the autoxidation of relatively stable reaction products. The logs kcat/Km of all the compounds examined exhibited parabolic dependence on their enthalpies of single-electron- or two-electron (hydride) reduction, obtained by quantum mechanical calculations. This type of quantitative structure-activity relationships shows that the reactivity of nitroaromatics towards E. cloacae nitroreductase depends mainly on their hydride accepting properties, but not on their particular structure, and does not exclude the possibility of multistep hydride transfer.  相似文献   

10.
Summary Composting was investigated as a bioremediation technology for clean-up of sediments contaminated with explosives and propellants. Two field demonstrations were conducted, the first using 2,4,6-trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and N-methyl-N,2,4,6-tetranitroaniline (tetryl) contaminated sediment, and the second using nitrocellulose (NC) contaminated soil. Tests were conducted in thermophilic and mesophilic aerated static piles. Extractable TNT was reduced from 11840 mg/kg to 3 mg/kg, and NC from 13090 mg/kg to 16 mg/kg under thermophilic conditions. Under mesophilic conditions, TNT was reduced from 11 190 mg/kg to 50 mg/kg. The thermophilic and mesophilic half-lives were 11.9 and 21.9 days for TNT, 17.3 and 30.1 days for RDX, and 22.8 and 42.0 days for HMX, respectively. Known nitroaromatic transformation products increased in concentration over the first several weeks of the test period, but decreased to low concentrations thereafter.  相似文献   

11.
Three 2,4,6-trinitrotoluene (TNT) nitroreductases from Klebsiella sp. CI have different reduction capabilities that can degrade TNT by simultaneous utilization of two initial reduction pathways. Of these, nitroreductase II was purified to homogeneity by sequential chromatographies. Nitroreductase II is an oxygen-insensitive enzyme and reduces both TNT and nitroblue tetrazolium. The N-terminal amino acid sequence of the enzyme did not show any sequence similarity with those of other nitroreductases reported. However, it transformed TNT by the reduction of nitro groups like nitroreductase I. It had a higher substrate affinity and specific activity for TNT reduction than other nitroreductases, and it showed a higher oxidation rate of NADPH with the ortho-substituted isomers of TNT metabolites (2-hydroxylaminodinitrotoluene and 2-aminodinitrotoluene) than with para-substituted compounds (4-hydroxylaminodinitrotoluene and 4-amino-dinitrotoluene).  相似文献   

12.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   

13.
Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2, 4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent K(m) and k(cat) values of TNT reduction were 165 +/- 43 microM for TNT and 400 +/- 94 s(-1), respectively. Cyanide, an inhibitor for the CO/CO(2) oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.  相似文献   

14.
A new model for the initial transformation of 2,4,6-trinitrotoluene (TNT) by facultatively anaerobic and aerobic yeasts is presented. The model is based on the data that Saccharomyces sp. ZS-A1 was able to reduce the nitrogroups of TNT with the formation of 2- and 4-hydroxyaminodinitrotoluenes (2-HADNT and 4-HADNT) as the major early TNT metabolites (the molar HADNT/TNT ratio reached 0.81), whereas aminodinitrotoluenes (ADNTs) and the hydride-Meisenheimer complex of TNT (H-TNT) were the minor products. Candida sp. AN-L13 almost completely transformed TNT into H-TNT through the reduction of the aromatic ring. Candida sp. AN-L14 transformed TNT through a combination of the two mechanisms described. Aeration stimulated the production of HADNT from TNT, whereas yeast incubation under stationary conditions promoted the formation of HADNT. The transformation of TNT into HADNT led to a tenfold increase in the acute toxicity of the TNT preparation with respect to Paramecium caudatum, whereas the increase in the toxicity was about twofold in the case of the alternative attack at the aromatic ring.  相似文献   

15.
Bioremediation of munitions-contaminated soil requires effective transformation and detoxification of high concentrations of 2,4,6-trinitrotoluene (TNT). Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, aerobically transformed TNT (100 mg/L) in culture medium within 15 h, causing transient accumulation of hydroxylaminodinitrotoluenes (HADNTs). The predominance of 2-hydroxylamino-4,6-dinitrotoluene (2HADNT), as well as 2-amino-4,6-dinitrotoluene (2ADNT) and 4,4' ,6,6' -tetranitro-2,2' -azoxytoluene (2,2'AZT), indicated preferential reduction of the TNT ortho nitro group. While only 12% of the TNT was transformed to 2ADNT, up to 65% was transformed to tetranitroazoxytoluenes (AZTs), which accumulated as a precipitate. The precipitate was formed by microscopic particles adhering to bacterial cells, which subsequently formed clusters containing lysed cells. Toxicity toward bacteria was primarily attributed to 2ADNT, because pure AZTs preincubated with sterile medium had little effect on the strain. While the culture medium containing TNT exhibited toxicity toward corn (Zea mays L.) and witchgrass (Panicum capillare L.), little phytotoxicity was observed after incubating with P. aeruginosa strain MX for 4 d. Strong binding of HADNTs to soil and low AZT bioavailability may further promote the detoxification of TNT in soil.  相似文献   

16.
2,4,6-Triaminotoluene (TAT), an oxygen sensitive metabolic product of 2,4,6-trinitrotoluene (TNT) reduction, was derivatized yielding oxygen stable products using a procedure previously employed for the stabilization of other O2sensitive TNT metabolic products. A HPLC method is presented that allows for the separation of diverse intermediates and products of TNT metabolism following the derivatization procedure. © Rapid Science Ltd. 1998  相似文献   

17.
The fate of 2,4,6-trinitrotoluene (TNT) and TNT transformation products in two aerobic enrichment cultures was investigated. Contaminant fate was assessed through analysis of TNT and its oxygen-stable aminated derivatives using capillary electrophoresis and by tracking the distribution of 14C-labeled products in either the dissolved, mineralized, or biomass fractions. TNT transformation products were generated by reduction with Fe(0), reduction by S2-, and transformation by Clostridium acetobutylicum and by Eichornia crassipies (water hyacinth). Enrichment cultures varied in the growth substrate and nitrogen source supplied. The dextrose-fed mixed culture (DMC) was enriched on dextrose with yeast extract providing nitrogen for growth, whereas the anthranilic acid-fed mixed culture (AMC) received anthranilic acid as its source of both energy and nitrogen. Each culture transformed TNT, but their product distributions varied. The DMC exhibited higher levels of biomass association, whereas the AMC produced higher levels of aminated nitrotoluenes and unidentified water-soluble products. Neither mineralized TNT to a significant degree. TNT disappearance was observed in all transformation systems, along with the formation of water-soluble products; however, formation of aminated nitrotoluenes was observed only in the sulfide systems. Neither aerobic culture was capable of mineralizing the TNT transformation products introduced, regardless of the transformation method used to prepare them. The distribution of products between the aqueous phase and the biomass did vary between cultures and was affected by the transformation system used.  相似文献   

18.
The enzymatic transformation of 2,4,6-trinitrotoluene (TNT) by purified XenB, an NADPH-dependent flavoprotein oxidoreductase from Pseudomonas fluorescens I-C, was evaluated by using natural abundance and [U-(14)C]TNT preparations. XenB catalyzed the reduction of TNT either by hydride addition to the aromatic ring or by nitro group reduction, with the accumulation of various tautomers of the protonated dihydride-Meisenheimer complex of TNT, 2-hydroxylamino-4,6-dinitrotoluene, and 4-hydroxylamino-2, 6-dinitrotoluene. Subsequent reactions of these metabolites were nonenzymatic and resulted in predominant formation of at least three dimers with an anionic m/z of 376 as determined by negative-mode electrospray ionization mass spectrometry and the release of approximately 0.5 mol of nitrite per mol of TNT consumed. The extents of the initial enzymatic reactions were similar in the presence and in the absence of O(2), but the dimerization reaction and the release of nitrite were favored under aerobic conditions or under anaerobic conditions in the presence of NADP(+). Reactions of chemically and enzymatically synthesized and high-pressure liquid chromatography-purified TNT metabolites showed that both a hydroxylamino-dinitrotoluene isomer and a tautomer of the protonated dihydride-Meisenheimer complex of TNT were required precursors for the dimerization and nitrite release reactions. The m/z 376 dimers also reacted with either dansyl chloride or N-1-naphthylethylenediamine HCl, providing evidence for an aryl amine functional group. In combination, the experimental results are consistent with assigning the chemical structures of the m/z 376 species to various isomers of amino-dimethyl-tetranitrobiphenyl. A mechanism for the formation of these proposed TNT metabolites is presented, and the potential enzymatic and environmental significance of their formation is discussed.  相似文献   

19.
The effects of nitroglycerine (NTG) are mediated by liberated nitric oxide (NO) after NTG enzymatic bio-transformation in cells. The aim of this study was to evaluate some products of NTG bio-transformation and their consequences on the redox status of rat erythrocytes and reticulocytes, considering the absence and presence of functional mitochondria in these cells, respectively. Rat erythrocyte and reticulocyte-rich red blood cell (RBC) suspensions were aerobically incubated (2 h, 37 degrees C) without (control) or in the presence of different concentrations of NTG (0.1, 0.25, 0.5, 1.0 and 1.5 mM). In rat erythrocytes, NTG did not elevate the concentrations of any reactive nitrogen species (RNS). However, NTG robustly increased concentration of methemoglobin (MetHb), suggesting that NTG bio-transformation was primarily connected with hemoglobin (Hb). NTG-induced MetHb formation was followed by the induction of lipid peroxidation. In rat reticulocytes, NTG caused an increase in the levels of nitrite, peroxinitrite, hydrogen peroxide, MetHb and lipid peroxide levels, but it decreased the level of the superoxide anion radical. Millimolar concentrations of NTG caused oxidative damage of both erythrocytes and reticulocytes. These data indicate that two pathways of NTG bio-transformation exist in reticulocytes: one generating RNS and the other connected with Hb (as in erythrocytes). In conclusion, NTG bio-transformation is different in erythrocytes and reticulocytes due to the presence of mitochondria in the latter.  相似文献   

20.
Graded methemoglobinemia (MetHb) was produced in unanesthetized fetal sheep to determine the effects on brain oxygenation. MetHb was induced by infusing methemoglobin-containing erythrocytes in exchange for fetal blood. During the hour after MetHb was established, fetal methemoglobin concentrations averaged 1.23 +/- 0.12 (mild MetHb), 1.71 +/- 0.13 (moderate MetHb), and 2.27 +/- 0.17 g/dl (severe MetHb). MetHb reduced mean arterial O2 content by approximately 19 (mild MetHb), 29 (moderate MetHb), and 39% (severe MetHb). The average preductal arterial PO2 fell by 1.6 (-7%), 2.8 (-11%), and 4.0 Torr (-16%) for mild, moderate, and severe MetHb, respectively. Fetal heart rate increased significantly during mild and moderate MetHb, and mean arterial pressure fell slightly during moderate and severe MetHb. The incidences of fetal breathing and eye movements were reduced in a dose-dependent manner when the calculated brain end-capillary PO2 was less than 14 Torr. We conclude that: 1) the effective capillary PO2 in the fetal brain can be significantly reduced by increasing the distance between non-methemoglobin-laden erythrocytes in capillaries and 2) hypoxic inhibition of fetal breathing probably arises from discrete areas of the brain having a PO2 less than 3 Torr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号