首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis thaliana, a small annual weed belonging to the mustard family, has become a widely used model in plant genetic research. It has a small genome, short life cycle, and is easy to mutagenize. Identification of genes based on phenotype alone, often a rather difficult part of molecular genetic research, is easiest in this plant. Laboratories working on the "model" plant Arabidopsis thaliana have created a network for sharing resources and ideas, so progress has been rapid. The importance of this plant to biotechnology is that genes isolated from Arabidopsis can be used to find their homologs in crop plants. Likewise, fundamental mechanisms can be understood in a model plant, and applied in crop plants.  相似文献   

2.
Arabidopsis thaliana (Thale cress, Arabidopsis) is an ideal model organism for the molecular genetic analysis of many plant processes. The availability of a complete physical map would greatly facilitate the gene cloning steps in these studies. The small genome size of Arabidopsis makes the construction of such a map a feasible goal. One of the approaches to construct an overlapping library of the Arabidopsis genome takes advantage of the many mapped markers and the availability of Arabidopsis yeast artificial chromosome (YAC) libraries. Mapped molecular markers are used to identify corresponding YAC clones and thereby place them on the genetic map. Subsequently, these YAC clones provide the framework for directed walking experiments aimed at closing the gaps between the YAC contigs. Adopting this strategy, YAC clones comprising about 10% of the genome have been assigned to the top halves of Arabidopsis chromosomes 4 and 5. Extensive walking experiments in a 10 cM interval of chromosome 4 have resulted in two contiguous regions in the megabase size range.  相似文献   

3.
The model plant Arabidopsis thaliana has long been used for genetic, cellular and molecular studies. Whereas this plant was used as a model of genetics in the 1940's, the first cytogenetic observation of A. thaliana chromosomes was published in the beginning of the 20th century. Although Arabidopsis was not originally considered to be a good plant model for cytogenetics due to smallness of its genome, the number of published chromosome studies has expanded enormously in recent years. The advent of fluorescence in situ hybridization techniques on meiotic chromosomes together with indirect immuno-fluorescence localization of key chromosomal and nuclear proteins and wide accessibility of Arabidopsis mutants have resulted in a synergistic boost in Arabidopsis cytogenetics. In comparison to other plant species, the small genome with under-represented DNA repeats together with a small number of chromosomes makes this model plant easy to comprehend for a cytologist.  相似文献   

4.
Rice molecular genetic map using RFLPs and its applications   总被引:3,自引:0,他引:3  
In the past decade, notable progress has been made in rice molecular genetic mapping using genomic or cDNA clones. A total of over 3000 DNA markers, mainly with RFLPs, have been mapped on the rice genome. In addition, many studies related to tagging of genes of interest, gene isolation by map-based cloning and comparative mapping between cereal genomes have advanced along with the development of a high-density molecular genetic map. Thus rice is considered a pivotal plant among cereal crops and, in addition to Arabidopsis, is a model plant in genome analysis. In this article, the current status of the construction of rice molecular genetic maps and their applications are reviewed.  相似文献   

5.
A genetic map of potato (Solanum tuberosum) was constructed based on 293 restriction fragment length polymorphism (RFLP) markers including 31 EST markers of Arabidopsis. The in silico comparison of all marker sequences with the Arabidopsis genomic sequence resulted in 189 markers that detected in Arabidopsis 787 loci with sequence conservation. Based on conserved linkage between groups of at least three different markers on the genetic map of potato and the physical map of Arabidopsis, 90 putative syntenic blocks were identified covering 41% of the potato genetic map and 50% of the Arabidopsis physical map. The existence and distribution of syntenic blocks suggested a higher degree of structural conservation in some parts of the potato genome when compared to others. Syntenic blocks were redundant: most potato syntenic blocks were related to several Arabidopsis genome segments and vice versa. Some duplicated potato syntenic blocks correlated well with ancient segmental duplications in Arabidopsis. Syntenic relationships between different genomic segments of potato and the same segment of the Arabidopsis genome indicated that potato genome evolution included ancient intra- and interchromosomal duplications. The partial genome coveridge and the redundancy of syntenic blocks limits the use of synteny for functional comparisons between the crop species potato and the model plant Arabidopsis.  相似文献   

6.
The first decade of molecular analysis of plant cell cycle control genes revealed how well the important regulators are conserved among eukaryotes. The recent completion of the Arabidopsis genome sequence, and the use of increasingly sophisticated biochemical assays and genetic approaches, heralds a period of more detailed functional analysis of cell cycle regulators aimed at resolving their role in plant growth and development.  相似文献   

7.
We have constructed a restriction fragment length polymorphism (RFLP) linkage map of the nuclear genome of the small flowering plant Arabidopsis thaliana. The map is based on the meiotic segregation of both RFLP and morphological genetic markers from five independent crosses. The morphological markers on each of the five chromosomes were included in the crosses to allow alignment of the RFLP map with the established genetic map. The map contains 94 new randomly distributed molecular markers (nine identified cloned Arabidopsis genes and 85 genomic cosmid clones) that detect polymorphisms between the Landsberg erecta and Columbia races. In addition, 17 markers from an independently constructed RFLP map of the Arabidopsis genome [Chang, C., Bowman, J.L., DeJohn, A.W., Lander, E.S., and Meyerowitz, E.M. (1988). Proc. Natl. Acad. Sci. USA 85, 6856-6860] have been included to permit integration of the two RFLP maps.  相似文献   

8.
Delhaize  E.  Randall  P. J.  Wallace  P. A.  Pinkerton  A. 《Plant and Soil》1993,(1):131-134
Arabidopsis thaliana is a small herbaceous plant which is used as a model plant for defining the molecular basis of many plant processes. The advantages of this plant for genetic studies are its small, well-characterized genome, a short life cycle, large seed set and small seed size. The analysis of mutants of this plant has proved useful in understanding basic plant processes. To isolate Arabidopsis mutants in mineral nutrition, we have devised a method of screening based on X-ray fluorescence spectrometry (XRFS) analysis of leaves. We have identified three mutants in P and Mn nutrition after screening over 100 000 seedlings. These mutants show either excessive accumulation of P or Mn in shoots or an inabilty to accumulate normal concentrations of P.  相似文献   

9.
Their small sizes have meant that the Arabidopsis and rice genomes are the best-studied of all plant genomes. Although even closely related plant species can show large variations in genome size, extensive genome colinearity has been established at the genetic level and recently also at the gene level. This allows the transfer of information and resources assembled for rice and Arabidopsis to be used in the genome analysis of many other plants.  相似文献   

10.
The plant PDR family of ABC transporters   总被引:8,自引:0,他引:8  
van den Brûle S  Smart CC 《Planta》2002,216(1):95-106
The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has been implicated in the transport of antifungal agents. In this paper, we provide an analysis of the entire family of PDR genes present in the Arabidopsis thaliana (L.) Heynh. genome. This analysis both resolves discrepancies in published inventories of plant ABC proteins and provides an expression analysis of all the annotated Arabidopsis PDR genes. The results indicate that the Arabidopsis genome contains 15 genes encoding PDR proteins and that these genes show a spectrum of specific expression patterns, both at the organ level and in response to various hormonal, environmental and chemical factors. These data provide a scaffold for the future molecular genetic analysis of this important family of ABC transporters. In addition, we demonstrate the usefulness of such data by using them to identify an Arabidopsis PDR protein that may play a role in the extrusion of the antifungal diterpene sclareol. Electronic Supplementary Material is available if you access this article at http://dx.doi.org/10.1007/s00425-002-0889-z. On that page (frame on the left side), a link takes you directly to the supplementary material.  相似文献   

11.
The SeedGenes database (http://www.seedgenes.org) presents molecular and phenotypic information on essential, non-redundant genes of Arabidopsis that give a seed phenotype when disrupted by mutation. Experimental details are synthesized for efficient use by the community and organized into two major sections in the database, one dealing with genes and the other with mutant alleles. The database can be queried for detailed information on a single gene to create a SeedGenes Profile. Queries can also generate lists of genes or mutants that fit specified criteria. The long-term goal is to establish a complete collection of Arabidopsis genes that give a knockout phenotype. This information is needed to focus attention on genes with important cellular functions in a model plant and to assess from a genetic perspective the extent of functional redundancy in the Arabidopsis genome.  相似文献   

12.
We have developed genetic maps, based on expressed sequence tags (ESTs) that are homologous to Arabidopsis genes, in four dicotyledonous crop plant species from different families. A comparison of these maps with the physical map of Arabidopsis reveals common genome segments that appear to have been conserved throughout the evolution of the dicots. In the four crop species analysed these segments comprise between 16 and 33% of the Arabidopsis genome. Our findings extend the synteny patterns previously observed only within plant families, and indicate that structural and functional information from the model species will be, at least in part, applicable in crop plants with large genomes.  相似文献   

13.
Physical mapping of the rice genome with BACs   总被引:10,自引:0,他引:10  
Zhang  Hong-Bin  Wing  Rod A. 《Plant molecular biology》1997,35(1-2):115-127
The development of genetics in this century has been catapulted forward by several milestones: rediscovery of Mendel's laws, determination of DNA as the genetic material, discovery of the double-helix structure of DNA and its implications for genetic behavior, and most recently, analysis of restriction fragment length polymorphisms (RFLPs). Each of these milestones has generated a huge wave of progress in genetics. Consequently, our understanding of organismal genetics now extends from phenotypes to their molecular genetic basis. It is now clear that the next wave of progress in genetics will hinge on genome molecular physical mapping, since a genome physical map will provide an invaluable, readily accessible system for many detailed genetic studies and isolation of many genes of economic or biological importance. Recent development of large-DNA fragment (>100 kb) manipulation and cloning technologies, such as pulsed-field gel electrophoresis (PFGE), and yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) cloning, has provided the powerful tools needed to generate molecular physical maps for higher-organism genomes. This chapter will discuss (1) an ideal physical map of plant genome and its applications in plant genetic and biological studies, (2) reviews on physical mapping of the genomes of Caenorhabditis elegans, Arabidopsis thaliana, and man, (3) large-insert DNA libraries: cosmid, YAC and BAC, and genome physical mapping, (4) physical mapping of the rice genome with BACs, and (5) perspectives on the physical mapping of the rice genome with BACs.  相似文献   

14.
Although Arabidopsis is well established as the premiere model species in plant biology, rice (Oryza sativa) is moving up fast as the second-best model organism. In addition to the availability of large sets of genetic, molecular, and genomic resources, two features make rice attractive as a model species: it represents the taxonomically distinct monocots and is a crop species. Plant structural genomics was pioneered on a genome-scale in Arabidopsis and the lessons learned from these efforts were not lost on rice. Indeed, the sequence and annotation of the rice genome has been greatly accelerated by method improvements made in Arabidopsis. For example, the value of full-length cDNA clones and deep expressed sequence tag resources, obtained in Arabidopsis primarily after release of the complete genome, has been recognized by the rice genomics community. For rice >250,000 expressed sequence tags and 28,000 full-length cDNA sequences are available prior to the completion of the genome sequence. With respect to tools for Arabidopsis functional genomics, deep sequence-tagged lines, inexpensive spotted oligonucleotide arrays, and a near-complete whole genome Affymetrix array are publicly available. The development of similar functional genomics resources for rice is in progress that for the most part has been more streamlined based on lessons learned from Arabidopsis. Genomic resource development has been essential to set the stage for hypothesis-driven research, and Arabidopsis continues to provide paradigms for testing in rice to assess function across taxonomic divisions and in a crop species.  相似文献   

15.
A sequence-based map of Arabidopsis genes with mutant phenotypes   总被引:9,自引:0,他引:9  
The classical genetic map of Arabidopsis contains 462 genes with mutant phenotypes. Chromosomal locations of these genes have been determined over the past 25 years based on recombination frequencies with visible and molecular markers. The most recent update of the classical map was published in a special genome issue of Science that dealt with Arabidopsis (D.W. Meinke, J.M. Cherry, C. Dean, S.D. Rounsley, M. Koornneef [1998] Science 282: 662-682). We present here a comprehensive list and sequence-based map of 620 cloned genes with mutant phenotypes. This map documents for the first time the exact locations of large numbers of Arabidopsis genes that give a phenotype when disrupted by mutation. Such a community-based physical map should have broad applications in Arabidopsis research and should serve as a replacement for the classical genetic map in the future. Assembling a comprehensive list of genes with a loss-of-function phenotype will also focus attention on essential genes that are not functionally redundant and ultimately contribute to the identification of the minimal gene set required to make a flowering plant.  相似文献   

16.
One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates.  相似文献   

17.
拟南芥——一把打开植物生命奥秘大门的钥匙   总被引:6,自引:0,他引:6  
张振桢  许煜泉  黄海 《生命科学》2006,18(5):442-446
在过去的20年中,拟南芥作为模式植物广泛用于植物生命科学研究。历时10年的模式植物拟南芥的全基因组测序工作于2000年完成,通过测序获得的拟南芥基因组核苷酸序列全部公布在互联网上,有力地推动了植物生命科学研究向前发展。科学家提出的“2010计划”旨在通过全世界植物科学家的努力,到2010年能够尽可能多地了解拟南芥基因的功能。通过拟南芥研究所获得的信息将有助于人类对控制不同植物复杂生命活动机制的认识。  相似文献   

18.
19.
Complementary packing of alpha-helices in proteins   总被引:10,自引:0,他引:10  
Efimov AV 《FEBS letters》1999,452(1-2):3-6
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号