首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the role and mechanism of action of interleukin (IL)-10 in regulating airway smooth muscle (ASM) responsiveness in the atopic asthmatic state, isolated rabbit tracheal ASM segments were passively sensitized with serum from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects in both the absence and presence of an anti-IL-10 receptor blocking antibody (Ab). Relative to control ASM, atopic asthmatic serum-sensitized tissues exhibited enhanced isometric constrictor responses to administered acetylcholine and attenuated the relaxation responses to isoproterenol. These proasthmatic effects were prevented in atopic asthmatic serum-sensitized ASM that was pretreated with anti-IL-10 receptor Ab. In complementary experiments, exposure of cultured human ASM cells to atopic asthmatic serum induced upregulated expression of IL-10 mRNA. Moreover, extended studies demonstrated that 1) exogenous IL-10 administration to naive ASM elicited augmented contractility to acetylcholine and impaired relaxation to isoproterenol, 2) these effects of IL-10 were prevented by pretreating the tissues with an IL-5 receptor Ab, and 3) IL-10 administration induced upregulated mRNA expression and release of IL-5 protein from cultured ASM cells. Collectively, these findings provide new evidence demonstrating that the altered responsiveness of atopic asthmatic serum-sensitized ASM is largely attributed to activation of an intrinsic T helper type 2-type autocrine mechanism involving IL-10-mediated release and the action of IL-5 in the sensitized ASM itself.  相似文献   

2.
Cell adhesion molecules (CAMs) have been importantly implicated in the pathobiology of the airway responses in allergic asthma, including inflammatory cell recruitment into the lungs and altered bronchial responsiveness. To elucidate the mechanism of CAM-related mediation of altered airway responsiveness in the atopic asthmatic state, the expressions and actions of intercellular adhesion molecule-1 (ICAM-1) and its counterreceptor ligand lymphocyte function-associated antigen-1 (LFA-1; i.e., CD11a/CD18) were examined in isolated rabbit airway smooth muscle (ASM) tissues and cultured human ASM cells passively sensitized with sera from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects. Relative to control tissues, the atopic asthmatic sensitized ASM exhibited significantly enhanced maximal contractility to acetylcholine and attenuated relaxation responses to isoproterenol. These proasthmatic changes in agonist responsiveness were ablated by pretreating the atopic sensitized tissues with a monoclonal blocking antibody (MAb) to either ICAM-1 or CD11a, whereas a MAb directed against the related beta(2)-integrin Mac-1 had no effect. Moreover, relative to control tissues, atopic asthmatic sensitized ASM cells displayed an autologously upregulated mRNA and cell surface expression of ICAM-1, whereas constitutive expression of CD11a was unaltered. Extended studies further demonstrated that 1) the enhanced expression and release of soluble ICAM-1 by atopic sensitized ASM cells was prevented when cells were pretreated with an interleukin (IL)-5-receptor-alpha blocking antibody and 2) administration of exogenous IL-5 to naive (nonsensitized) ASM cells induced a pronounced soluble ICAM-1 release from the cells. Collectively, these observations provide new evidence demonstrating that activation of the CAM counterreceptor ligands ICAM-1 and LFA-1, both of which are endogenously expressed in ASM cells, elicits autologously upregulated IL-5 release and associated changes in ICAM-1 expression and agonist responsiveness in atopic asthmatic sensitized ASM.  相似文献   

3.
The molecular mechanisms by which bradykinin induces excessive airway obstruction in asthmatics remain unknown. Transforming growth factor (TGF)-beta has been involved in regulating airway inflammation and remodeling in asthma, although it is unknown whether TGF-beta can modulate bradykinin-associated bronchial hyperresponsiveness. To test whether TGF-beta directly modulates airway smooth muscle (ASM) responsiveness to bradykinin, isolated murine tracheal rings were used to assess whether TGF-beta alters ASM contractile responsiveness to bradykinin. Interestingly, we found TGF-beta-treated murine rings (12.5 ng/ml, 18 h) exhibited increased expression of bradykinin 2 (B(2)) receptors and became hyperreactive to bradykinin, as shown by increases in maximal contractile responses and receptor distribution. We investigated the effect of TGF-beta on bradykinin-evoked calcium signals since calcium is a key molecule regulating ASM excitation-contraction coupling. We reported that TGF-beta, in a dose- (0.5-10 ng/ml) and time- (2-24 h) dependent manner, increased mRNA and protein expression of the B(2) receptor in cultured human ASM cells. Maximal B(2) receptor protein expression that colocalized with CD44, a marker of membrane cell surface, occurred after 18 h of TGF-beta treatment and was further confirmed using fluorescence microscopy. TGF-beta (2.5 ng/ml, 18 h) also increased bradykinin-induced intracellular calcium mobilization in fura-2-loaded ASM cells. TGF-beta-mediated enhancement of calcium mobilization was not attenuated with indomethacin, a cyclooxygenase inhibitor. These data demonstrate for the first time that TGF-beta may play a role in mediating airway hyperresponsiveness to bradykinin seen in asthmatics by enhancing ASM contractile responsiveness to bradykinin, possibly as a result of increased B(2) receptor expression and signaling.  相似文献   

4.
The airway responses to allergen exposure in allergic asthma are qualitatively similar to those elicited by specific viral respiratory pathogens, most notably rhinovirus (RV), suggesting that the altered airway responsiveness seen in allergic asthma and that elicited by viral respiratory tract infection may share a common underlying mechanism. To the extent that T helper cell type 2 (Th2) cytokines have been implicated in the pathogenesis of allergic asthma, this study examined the potential role(s) of Th2-type cytokines in mediating pro-asthmatic-like changes in airway smooth muscle (ASM) responsiveness after inoculation of naive ASM with human RV. Isolated rabbit ASM tissues and cultured human ASM cells were exposed to RV (serotype 16) for 24 h in the absence and presence of monoclonal blocking antibodies (MAbs) or antagonists directed against either the Th2-type cytokines interleukin (IL)-4 and IL-5, intercellular adhesion molecule (ICAM)-1 (the endogenous host receptor for most RVs), or the pleiotropic proinflammatory cytokine IL-1beta. Relative to control (vehicle-treated) tissues, RV-exposed ASM exhibited significantly enhanced isometric contractility to acetylcholine and impaired relaxation to isoproterenol. These pro-asthmatic-like changes in ASM responsiveness were ablated by pretreating the RV-exposed tissues with either IL-5-receptor-alpha blocking antibody or human recombinant IL-1-receptor antagonist, whereas IL-4 neutralizing antibody had no effect. Extended studies further demonstrated that inoculation of ASM cells with RV elicited 1) an increased mRNA expression and release of IL-5 protein, which was inhibited in the presence of anti-ICAM-1 MAb, and 2) an enhanced release of IL-1beta protein, which was inhibited in the presence of IL-5 receptor-alpha antibody. Collectively, these observations provide new evidence demonstrating that RV-induced changes in ASM responsiveness are largely attributed to ICAM-1-dependent activation of a cooperative autocrine signaling mechanism involving upregulated IL-5-mediated release of IL-1beta by the RV-exposed ASM itself.  相似文献   

5.
Because both T lymphocyte and airway smooth muscle (ASM) cell activation are events fundamentally implicated in the pathobiology of asthma, this study tested the hypothesis that cooperative intercellular signaling between activated T cells and ASM cells mediates proasthmatic changes in ASM responsiveness. Contrasting the lack of effect of resting human T cells, anti-CD3-activated T cells were found to adhere to the surface of naive human ASM cells, increase ASM CD25 cell surface expression, and induce increased constrictor responsiveness to acetylcholine and impaired relaxation responsiveness to isoproterenol in isolated rabbit ASM tissues. Comparably, exposure of resting T cells to ASM cells prestimulated with IgE immune complexes reciprocally elicited T cell adhesion to ASM cells and up-regulated T cell expression of CD25. Extended studies demonstrated that: 1) ASM cells express mRNAs and proteins for the cell adhesion molecules (CAMs)/costimulatory molecules, CD40, CD40L, CD80, CD86, ICAM-1 (CD54), and LFA-1 (CD11a/CD18); 2) apart from LFA-1, ASM cell surface expression of the latter molecules is up-regulated in the presence of activated T cells; and 3) pretreatment of ASM cells and tissues with mAbs directed either against CD11a or the combination of CD40 and CD86 completely abrogated both the activated T cell-induced changes in expression of the above CAMs/costimulatory molecules in ASM cells and altered ASM tissue responsiveness. Collectively, these observations identify the presence of bi-directional cross-talk between activated T cells and ASM cells that involves coligation of specific CAMs/costimulatory molecules, and this cooperative intercellular signaling mediates the induction of proasthmatic-like changes in ASM responsiveness.  相似文献   

6.
IL-13 is a mediator of allergen-induced airway hyperresponsiveness (AHR). The aim of this study was to evaluate whether eotaxin and IL-5 were implicated in the effects of IL-13 on allergen-induced AHR or whether IL-13 may exert its effects through direct actions on airway smooth muscle (ASM). To study this question airway inflammation and AHR were induced in mice by sensitization and subsequent challenge on three successive days with ovalbumin. A monoclonal anti-IL-13 antibody administered before each challenge significantly reduced AHR without affecting airway eosinophilia. No changes of mRNA in BAL and lung tissues or protein levels in BAL of IL-5 or eotaxin were found following anti-IL-13 treatment. Combined injection of monoclonal anti-IL-5 and antieotaxin antibodies before each antigen challenge blocked airway eosinophilia but failed to reduce AHR. IL-13 induced calcium transients in cultured murine ASM cells and augmented the calcium and contractile responses of these cells to leukotriene D4. These results suggest that IL-13 plays an important role in allergen-induced AHR and is important in the early phases of the inflammatory process. Its effects on AHR are mediated independently of IL-5 and eotaxin and may involve a direct effect on ASM to augment its responsiveness.  相似文献   

7.
The chemokine thymus- and activation-regulated chemokine (TARC) induces selective migration of Th2, but not Th1, lymphocytes and is upregulated in the airways of asthmatic patients. The purpose of this study was to determine whether human airway smooth muscle (HASM) cells produce TARC. Neither IL-4, IL-13, IL-1beta, IFN-gamma, nor TNF-alpha alone stimulated TARC release into the supernatant of cultured HASM cells. However, both IL-4 and IL-13 increased TARC protein and mRNA expression when administered in combination with TNF-alpha but not IL-1beta or IFN-gamma. Macrophage-derived chemokine was not expressed under any of these conditions. TARC release induced by TNF-alpha + IL-13 or TNF-alpha + IL-4 was inhibited by the beta-agonist isoproterenol and by other agents that activate protein kinase A, but not by dexamethasone. To determine whether polymorphisms of the IL-4Ralpha have an impact on the ability of IL-13 or IL-4 to induce TARC release, HASM cells from multiple donors were genotyped for the Ile50Val, Ser478Pro, and Gln551Arg polymorphisms of the IL-4Ralpha. Our data indicate that cells expressing the Val50/Pro478/Arg551 haplotype had significantly greater IL-13- or IL-4-induced TARC release than cells with other IL-4Ralpha genotypes. These data indicate that Th2 cytokines enhance TARC expression in HASM cells in an IL-4Ralpha genotype-dependent fashion and suggest that airway smooth muscle cells participate in a positive feedback loop that promotes the recruitment of Th2 cells into asthmatic airways.  相似文献   

8.
9.
10.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

11.
12.
The hypothesis was tested that endogenous leukotriene (LT) production in the lung causes desensitisation of airway smooth muscle to LT. The synthesis of LTB4, C4, D4 and E4 by human lung tissue, obtained at thoracotomies, after stimulation with Ca-ionophore was assessed by HPLC. Functional studies of small airway smooth muscle from the same tissue specimens were carried out using LTC4 and methacholine as the contracting agents. Generation of LTB4, C4, D4 and E4 was 453 +/- 82, 84 +/- 15, 71 +/- 27 and 40 +/- 16 pmol/g fresh tissue respectively (mean +/- S.E.M., n = 10). All airway smooth muscle preparations responded to LTC4 in a concentration dependent way with a -log EC20 of 8.56 +/- 0.13, a -log EC50 of 7.95 +/- 0.08 and a Tmax of 82 +/- 11 mg force/mg tissue weight, corresponding to 79 +/- 4% of the maximal response to methacholine (mean +/- S.E.M.; 27 preparations from 10 patients). No correlations were found between any of the functional parameters (-logEC20, -logEC50, Tmax to LTC4 and methacholine) and the amounts of LT's generated by the lung tissue. Furthermore airway smooth muscle contractility was not significantly reduced after repeated exposure of bronchiolar strips to LTC4 in vitro. These findings suggest that the responsiveness of human peripheral airway smooth muscle to LT is not related to the capacity of the lung tissue to synthetize LT.  相似文献   

13.
14.
Airway smooth muscle phenotype may be modulated in response to external stimuli under physiological and pathophysiological conditions. The effect of mechanical forces on airway smooth muscle phenotype were evaluated in vitro by suspending weights of 0.5 or 1 g from the ends of canine tracheal smooth muscle tissues, incubating the weighted tissues for 6 h, and then measuring the expression of the phenotypic marker protein, smooth muscle myosin heavy chain (SmMHC). Incubation of the tissues at a high load significantly increased expression of SmMHC compared with incubation at low load. Incubation of the tissues at a high load also decreased activation of PKB/Akt, as indicated by its phosphorylation at Ser 473. Inhibition of Akt or phosphatidylinositol-3,4,5 triphosphate-kinase increased SmMHC expression in tissues at low load but did not affect SmMHC expression at high load. IL-13 induced a significant increase in Akt activation and suppressed the expression of SmMHC protein at both low and high loads. The role of integrin signaling in mechanotransduction was evaluated by expressing a PINCH (LIM1-2) fragment in the muscle tissues that prevents the membrane localization of the integrin-binding IPP complex (ILK/PINCH/α-parvin), and also by expressing an inactive integrin-linked kinase mutant (ILK S343A) that inhibits endogenous ILK activity. Both mutants inhibited Akt activation and increased expression of SmMHC protein at low load but had no effect at high load. These results suggest that mechanical stress and IL-13 both act through an integrin-mediated signaling pathway to oppositely regulate the expression of phenotypic marker proteins in intact airway smooth muscle tissues. The stimulatory effects of mechanical stress on contractile protein expression oppose the suppression of contractile protein expression mediated by IL-13; thus the imposition of mechanical strain may inhibit changes in airway smooth muscle phenotype induced by inflammatory mediators.  相似文献   

15.
Asthma is a major cause of morbidity and mortality worldwide. It is characterized by airway dysfunction and inflammation. A key determinant of the asthma phenotype is infiltration of airway smooth muscle bundles by activated mast cells. We hypothesized that interactions between these cells promotes airway smooth muscle differentiation into a more contractile phenotype. In vitro coculture of human airway smooth muscle cells with beta-tryptase, or mast cells with or without IgE/anti-IgE activation, increased airway smooth muscle-derived TGF-beta1 secretion, alpha-smooth muscle actin expression and agonist-provoked contraction. This promotion to a more contractile phenotype was inhibited by both the serine protease inhibitor leupeptin and TGF-beta1 neutralization, suggesting that the observed airway smooth muscle differentiation was driven by the autocrine release of TGF-beta1 in response to activation by mast cell beta-tryptase. Importantly, in vivo we found that in bronchial mucosal biopsies from asthmatics the intensity of alpha-smooth muscle actin expression was strongly related to the number of mast cells within or adjacent to an airway smooth muscle bundle. These findings suggest that mast cell localization in the airway smooth muscle bundle promotes airway smooth muscle cell differentiation into a more contractile phenotype, thus contributing to the disordered airway physiology that characterizes asthma.  相似文献   

16.
The purpose of the present study was to determine the responsiveness of airway vascular smooth muscle (AVSM) as assessed by airway mucosal blood flow (Qaw) to inhaled methoxamine (alpha(1)-agonist; 0.6-2.3 mg) and albuterol (beta(2)-agonist; 0.2-1.2 mg) in healthy [n = 11; forced expiratory volume in 1 s, 92 +/- 4 (SE) % of predicted] and asthmatic (n = 11, mean forced expiratory volume in 1 s, 81 +/- 5%) adults. Mean baseline values for Qaw were 43.8 +/- 0.7 and 54.3 +/- 0.8 microl. min(-1). ml(-1) of anatomic dead space in healthy and asthmatic subjects, respectively (P < 0.05). After methoxamine inhalation, the maximal mean change in Qaw was -13.5 +/- 1.0 microl. min(-1). ml(-1) in asthmatic and -7.1 +/- 2.1 microl. min(-1). ml(-1) in healthy subjects (P < 0.05). After albuterol, the mean maximal change in Qaw was 3.0 +/- 0.8 microl. min(-1). ml(-1) in asthmatic and 14.0 +/- 1.1 microl. min(-1). ml(-1) in healthy subjects (P < 0.05). These results demonstrate that the contractile response of AVSM to alpha(1)-adrenoceptor activation is enhanced and the dilator response of AVSM to beta(2)-adrenoceptor activation is blunted in asthmatic subjects.  相似文献   

17.
18.
In severe or chronic asthma, there is an increase in airway smooth muscle cell (ASMC) mass as well as an increase in connective tissue proteins in the smooth muscle layer of airways. Transforming growth factor-beta (TGF-beta) exists in three isoforms in mammals and is a potent regulator of connective tissue protein synthesis. Using immunohistochemistry, we had previously demonstrated that ASMCs contain large quantities of TGF-beta1-3. In this study, we demonstrate that bovine ASMC-derived TGF-beta associates with the TGF-beta latency binding protein-1 (LTBP-1) expressed by the same cells. The TGF-beta associated with LTBP-1 localizes TGF-beta extracellularly. Furthermore, plasmin, a serine protease, regulates the secretion of a biologically active form of TGF-beta by ASMCs as well as the release of extracellular TGF-beta. The biologically active TGF-beta released by plasmin induces ASMCs to synthesize collagen I in an autocrine manner. The autocrine induction of collagen expression by ASMCs may contribute to the irreversible fibrosis and remodeling seen in the airways of some asthmatics.  相似文献   

19.
Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in all dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号