首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to detect if hypothalamic-pituitary maturation was accompanied by significant proliferation changes in differentiated pituitary cell pools. For this purpose, pituitary corticotroph (Ct), mammotroph (Mt) and somatotroph (St) proliferation activities were scanned in intact female rats during the postnatal (P) period (1–35 postnatal days). The techniques of tritiated thymidine labelling, immunostaining and autoradiography were combined to visualize DNA synthesis of hormone containing cells. Immunoreactive cell densities were measured using image analysis, and double labelled cells were counted. Corticotroph proliferation activity increased significantly on day P12, followed by an increase in the Ct proportion on days P13–14. This is the first observation of a spontaneous change of corticotroph proliferation at the end of the stress nonresponsive period. The mammotroph density and proliferation rate increased gradually during postnatal maturation, until the Mt pool overran other cell types of the female hypophysis on day 35. The somatotroph pool was the most numerous until day P20; the proliferation rate remained constant while St proportions increased reaching a plateau between days P13 and 20, then decreased to the adult level. Each cell type examined showed a characteristic, individual density and proliferation pattern.  相似文献   

2.
We measured lung hyaluronidase activity in rats during postnatal life and during the repair of oxygen-induced lung injury. Hyaluronidase activity increased rapidly after birth and peaked at 16-fold the initial value at 8 days. The peak preceded decreased cell proliferation and the onset of differentiation; this is consistent with current concepts of the role of hyaluronidase. During the repair of lung injury, hyaluronidase activity increased to 2.5-fold the control value at 1 day post-injury, but had decreased by 3 days. This early peak is probably related to simultaneous cell proliferation and differentiation. We postulate that changes in hyaluronidase can influence lung growth and repair and that the system may be amenable to manipulation.  相似文献   

3.
Postnatal restoration of the mouse urinary bladder urothelium   总被引:2,自引:2,他引:0  
Mouse urothelium is disrupted just before birth, followed by a postnatal restoration process which includes cell proliferation, death and differentiation. We assessed urothelial proliferation by the expression of proliferating cell nuclear antigen (PCNA), desquamation by electron microscopy, and apoptosis by TUNEL staining and urothelial differentiation by the expression of uroplakins and cytokeratin 20 (CK20) as well as the apical plasma membrane maturation. Our results indicated that urothelial proliferation was high from birth until about the 14th postnatal day. A majority of basal cells and even occasional superficial cells were PCNA positive during the first 5 postnatal days. Cell death occurred during the first 9 postnatal days. Between birth and day 5, single cells underwent apoptosis, whereas between days 6 and 9 cells mainly desquamated. CK20 and uroplakins were expressed in all superficial cells in postnatal urothelium. Their subcellular distribution characteristically changed in accordance with the progressive differentiation of superficial cells. During the urothelial postnatal development, proliferation activity slowly decreases to the proliferatively quiescent urothelium of the adult animal. Apoptosis is present in the first 9 postnatal days and within a few days of this period it appears simultaneously with desquamation. Superficial urothelial cells gradually differentiate, which is reflected in the changeable morphology of the apical plasma membrane.  相似文献   

4.
During the preoviposition and oviposition periods of ixodid ticks, the salivary glands degenerate. It is unclear whether this is a necrotic or a programmed cell death event. We used an in situ TUNEL technique to determine if salivary gland degeneration involves apoptosis. Salivary glands were dissected from replete females at days 3, 5, 8, 11, 13, and 33 post-detachment. There were no differences in tick weight at detachment, suggesting that changes were not due to engorgement abnormalities. The onset of apoptosis began at day 5 and continued through oviposition at day 33. The greatest amount of nuclei containing fragmented DNA was observed on day 8 post-detachment, suggesting this was the peak occurrence of programmed cell death. Further, the temporal organization of programmed cell death suggests that the granule-secreting acini undergo apoptosis first, and that during the first week of oviposition the type I acini do not exhibit programmed cell death. These data suggest that the type I acini may still function in maintaining off-host hydration state of ovipositing females. These data provide morphological evidence that salivary gland degeneration involves a temporal programmed cell death event.  相似文献   

5.
The role of sensory nociceptor nerves in cutaneous wound healing was investigated following full-thickness 4-mm diameter dorsal cutaneous excision wounding of rats on postnatal day 12. In rats with intact innervation, wounds at 3 days contained large numbers of TUNEL- and BRDU-labeled nuclei, consistent with inflammatory cell death and granulation cell proliferation. Wound area and volume decreased through 11 days in concert with a transient appearance of alpha-smooth muscle actin-immunoreactive myofibroblasts, declining rates of cell division, and increased occurrence of apoptotic cells. Sensory denervation by capsaicin injections on postnatal days 2 and 9 reduced calcitonin gene-related peptide-immunoreactive wound innervation persistently by up to 43%. This was associated with increased wound surface area and volume, and delays in scab loss and re-epithelialization. Relative to control wounds, granulation tissue showed increased myofibroblast content at 5-7 days. Capsaicin-treated rats had more BRDU-labeled cells, including myofibroblasts, through day 7. Numbers of TUNEL apoptotic cells per unit area of tissue section were reduced by denervation in both early and late stages of healing. We conclude that partial loss of sensory innervation impairs cutaneous wound healing in developing rats, as manifested by delayed re-epithelialization and failure of the wound area to decrease normally through at least 21 days. This is associated with an abnormally enlarged wound tissue volume resulting from increased granulation cell proliferation without proportionate increases in apoptosis. These findings suggest that nociceptor innervation plays a critical role in wound healing by regulating wound cellularity.  相似文献   

6.
7.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells and could be a regulatory factor for alveolar epithelial cell proliferation after lung injury. We investigated lung PTHrP expression in rats exposed to 85% oxygen. Lung levels of PTHrP were significantly decreased between 4 and 8 days of hyperoxia, concurrent with increased expression of proliferating cell nuclear antigen and increased incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA in lung corner cells. PTHrP receptor was present in both normal and hyperoxic lung. To test whether the fall in PTHrP was related to cell proliferation, we instilled PTHrP into lungs on the fourth day of hyperoxia. Eight hours later, BrdU labeling in alveolar corner cells was 3.2 +/- 0.4 cells/high-power field in hyperoxic PBS-instilled rats compared with 0.5 +/- 0.3 cells/high-power field in PTHrP-instilled rats (P < 0. 01). Thus PTHrP expression changes in response to lung injury due to 85% oxygen and may regulate cell proliferation.  相似文献   

8.
We have previously postulated an in vivo pathway of thymic epithelial (TE) cell maturation in pre- and postnatal thymus, whereby endocrine medullary TE cells terminally differentiate to form Hassall's bodies. Epithelial-cell differentiation has been well documented in vitro using epidermal keratinocytes. Therefore, to characterize TE-cell differentiation in vitro, we observed clones of the rat TE cell line, IT26R21, after 4 and 14 days in culture. We found alterations in cell morphology, the cessation of cell proliferation, and the acquisition of a differentiation antigen defined by monoclonal antibody TE-19 (a marker of terminally differentiated epithelial cells). At light and electron microscopy, we detected progressive TE-cell stratification and squamous-cell formation between 4 and 14 days of culture. Autoradiography on day 14 showed that squamous TE cells in stratified layers did not incorporate tritiated thymidine, while surrounding smaller cells adhering to the substratum continued to synthesize DNA. At indirect immunofluorescence, only 3% of cells reacted with monoclonal antibody TE-19 at day 4, while on day 14, 22% of the TE cells were TE-19 positive (P less than 0.02). Antibody-TE-19 reactivity was limited to stratified, squamous TE cells. Additionally, we isolated a clone of the IT26R21 cell line that did not undergo these changes characteristic of TE cell differentiation. We conclude that IT26R21 TE cells are capable of undergoing programs of both terminal differentiation and cell renewal in vitro.  相似文献   

9.
Cell proliferation often decreases gradually during postnatal development of some organs. However, the underlying molecular mechanisms remain unclear. Epididymis, playing important roles in sperm maturation, is a typical organ of this type, which displays a decreased proliferation during postnatal development and even ceased at the adult stage. Here, epididymis was employed as a model to explore the underlying mechanisms. We profiled the microRNA and mRNA expression of newborn (1 day) and adult (90 day) rat epididymis by microarray analysis, and found that the level of miR-29a was dramatically up-regulated during postnatal development of rat epididymis. Subsequent investigations demonstrated that overexpression of miR-29a inhibited the proliferation of epididymal epithelial cells in vitro. The nuclear autoantigenic sperm protein (NASP), a novel target of miR-29a, was significantly down-regulated during postnatal development of rat epididymis. Further analysis showed that silence of NASP mimicked the anti-proliferation effect of miR-29a, whereas overexpression of this protein attenuated the effect of miR-29a. As in rat epididymis, miR-29a was up-regulated and Nasp was down-regulated during postnatal development of mouse epididymis, heart, liver, and lung. Moreover, miR-29a can also inhibit the proliferation of cancer cells by targeting Nasp. Thus, an increase of miR-29a, and hence decrease of Nasp, may contribute to inhibit cell proliferation during postnatal organ development.  相似文献   

10.
11.
12.
According to the current view, the formation of new alveolar septa from preexisting ones ceases due to the reduction of a double- to a single-layered capillaries network inside the alveolar septa (microvasculature maturation postnatal days 14-21 in rats). We challenged this view by measuring stereologically the appearance of new alveolar septa and by studying the alveolar capillary network in three-dimensional (3-D) visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. We observed that new septa are formed at least until young adulthood (rats, days 4-60) and that roughly half of the new septa are lifted off of mature septa containing single-layered capillary networks. At the basis of newly forming septa, we detected a local duplication of the capillary network. We conclude that new alveoli may be formed in principle at any time and at any location inside the lung parenchyma and that lung development continues into young adulthood. We define two phases during developmental alveolarization. Phase one (days 4-21), lifting off of new septa from immature preexisting septa, and phase two (day 14 through young adulthood), formation of septa from mature preexisting septa. Clinically, our results ask for precautions using drugs influencing structural lung development during both phases of alveolarization.  相似文献   

13.
Type II epithelial cells are essential for lung development and remodeling, as they are precursors for type I cells and can produce vascular mitogens. Although type II cell proliferation takes place after hyperoxia, it is unclear why alveolar remodeling occurs normally in adults whereas it is permanently disrupted in newborns. Using a line of transgenic mice whose type II cells could be identified by their expression of enhanced green fluorescent protein and endogenous expression of surfactant proteins, we investigated the age-dependent effects of hyperoxia on type II cell proliferation and alveolar repair. In adult mice, type II cell proliferation was low during room air and hyperoxia exposure but increased during recovery in room air and then declined to control levels by day 7. Eight weeks later, type II cell number and alveolar compliance were indistinguishable from those in room air controls. In newborn mice, type II cell proliferation markedly increased between birth and postnatal day 7 before declining by postnatal day 14. Exposure to hyperoxia between postnatal days 1 and 4 inhibited type II cell proliferation, which resumed during recovery and was aberrantly elevated on postnatal day 14. Eight weeks later, recovered mice had 70% fewer type II cells and 30% increased lung compliance compared with control animals. Recovered mice also had higher levels of T1alpha, a protein expressed by type I cells, with minimal changes detected in genes expressed by vascular cells. These data suggest that perinatal hyperoxia adversely affects alveolar development by disrupting the proper timing of type II cell proliferation and differentiation into type I cells.  相似文献   

14.
Postnatal growth and renewal of mouse urothelium start on the day of birth. In the present study, temporal and spatial dimensions of urothelial growth were studied during the first two postnatal weeks. Quantitative analysis showed that the rate of urothelial cell proliferation is significantly higher during all 14 postnatal days than in adult mice. Three peaks of proliferative and mitotic activity were revealed: on the day of birth and postnatal day 1, on days 6 and 7, and on day 14. The high proliferation rate around the day of birth and at postnatal days 6 and 7 coincides with cell death in the urothelium. Semiquantitative analysis showed that during all 14 postnatal days, the urothelial proliferative response is mostly confined to the basal cell layer. Urothelial cells divide predominantly in parallel to the plain of the urothelium on all chosen postnatal days. Increased portions of urothelial cells, dividing perpendicularly to the urothelium were observed only on the day of birth and on postnatal day 7. Our results suggest that postnatal growth of mouse urothelium is particularly the result of an increasing number of cells in individual cell layers and not the result of an increasing number of cell layers.  相似文献   

15.
For the clarification of larval-to-adult muscle conversion, the authors established primary culture methods for adult- and larval-type myoblasts in the frog, Xenopus laevis, and examined the hormonal response in each case. The cell types were enzymatically dissociated from adult frog leg and tadpole tail muscles, respectively. The cells became attached to culture plates, proliferated, and fused with each other to form multinucleated myotubes within one week. Five significant differences between the two cell types were noted. (1) Adult cells showed greater proliferation activity than larval cells, the former increasing 5.5-fold over 6 days while the latter increase only 2.5-fold. (2) Differentiation (fusion) of larval type myoblasts started earlier. Cell fusion began on day 2 or 3 in larval cells and on day 4 in adult cells. (3) The metamorphic hormone, triiodo-L-thyronine (T3) decreased larval cell numbers to 56% of that of control-cultures on day 7 but had no effect on adult cell number. DNA synthetic activity (3H-thymidine incorporation) in larval cells decreased under T3 (10(-8) M) to 45% of the control level on day 7. (4) Differentiation of adult myoblasts into myotubes was promoted by T3, whereas that of larval cells diminished by half. (5) Myotube death was induced by T3 specifically in larval but not in adult cultures. In addition to the myotube death, double staining with TUNEL (in situ DNA nick end labeling) and anti-desmin antibody indicated that T3 induces myoblast (desmin+ cell) death specifically in larval but not in adult cells. It is thus evident that the conversion of a larval-type myogenic system during metamorphosis becomes possible through nearly totally specific control of cell division, cell differentiation, and programmed cell death at a precursor cell level by T3.  相似文献   

16.
We consider an age-maturity structured model arising from a blood cell proliferation problem. This model is "hybrid", i.e., continuous in time and age but the maturity variable is discrete. This is due to the fact that we include the cell division marker carboxyfluorescein diacetate succinimidyl ester. We use our mathematical analysis in conjunction with experimental data taken from the division analysis of primitive murine bone marrow cells to characterize the maturation/proliferation process. Cell cycle parameters such as proliferative rate beta, cell cycle duration tau, apoptosis rate gamma, and loss rate micro can be evaluated from CarboxyFluorescein diacetate Succinimidyl Ester + cell tracking experiments. Our results indicate that after three days in vitro, primitive murine bone marrow cells have parameters beta = 2.2 day(-1), tau = 0.3 day, gamma = 0.3 day(-1), and micro = 0.05 day(-1).  相似文献   

17.

Rationale

Semaphorin 3A (Sema3A) is a neural guidance cue that also mediates cell migration, proliferation and apoptosis, and inhibits branching morphogenesis. Because we have shown that genetic deletion of neuropilin-1, which encodes an obligatory Sema3A co-receptor, influences airspace remodeling in the smoke-exposed adult lung, we sought to determine whether genetic deletion of Sema3A altered distal lung structure.

Methods

To determine whether loss of Sema3A signaling influenced distal lung morphology, we compared pulmonary histology, distal epithelial cell morphology and maturation, and the balance between lung cell proliferation and death, in lungs from mice with a targeted genetic deletion of Sema3A (Sema3A-/-) and wild-type (Sema3A+/+) littermate controls.

Results

Genetic deletion of Sema3A resulted in significant perinatal lethality. At E17.5, lungs from Sema3A-/- mice had thickened septae and reduced airspace size. Distal lung epithelial cells had increased intracellular glycogen pools and small multivesicular and lamellar bodies with atypical ultrastructure, as well as reduced expression of type I alveolar epithelial cell markers. Alveolarization was markedly attenuated in lungs from the rare Sema3A-/- mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death.

Conclusions

These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury.  相似文献   

18.
The expression of glial fibrillary acidic protein (GFAP)-mRNA during mouse brain development and in astroglial primary cultures has been investigated by using two approaches: Northern-blot evaluation using a specific cDNA probe, and cell-free translation associated with immunoprecipitation. During brain maturation (4-56 days postnatal), the GFAP-mRNA underwent a biphasic evolution. An increase was observed between birth and day 15 (i.e., during the period of astroglial proliferation), which was followed by a decrease until day 56 (i.e., during astroglial cell differentiation). At older stages (300 days), an increase was observed, which might reflect gliosis. During astroglial in vitro development (7-32 days in culture), the GFAP-mRNA showed similar variations. An increase, observed during the period of astroglial proliferation (7-18 days), was followed by a decrease which occurred in parallel to marked changes in cell shape, cell process outgrowth, and the organization and accumulation of gliofilaments. During the same culture period (7-32 days), alpha-tubulin mRNA, which was used as an internal standard, did not vary significantly. These results show that the increase of the GFAP protein and of gliofilaments observed both in vivo and in vitro during astroglial differentiation cannot be ascribed to an accumulation of the GFAP-mRNA. It might be that more than one mechanism regulates the levels of free and polymerized GFAP and of its encoding mRNA.  相似文献   

19.
The extent of Sertoli cell proliferation during fetal and neonatal development determines the final adult testis size and potential for sperm output. To gain further knowledge of the factors that regulate Sertoli cell proliferation, the present study used a new approach to analyse changes in morphology and proliferation in the postnatal testis by combining organ culture with morphometric analysis. Fragments of rat testes from days 0 to 10 postpartum were cultured in contact with DMEM for 6 h or 72 h and fixed. The effects of ovine follicle-stimulating hormone (FSH) and activin were studied in an additional 72-h organ culture experiment using day 9 testes. Bromodeoxyuridine (BrdU) was added for the last 6 h of culture to mark proliferating cells. Two-microm sections of the fragments were analysed for morphological changes of the seminiferous cords, and the proportion of BrdU-labelled Sertoli and germ cells was determined. Assessment of 6-h samples revealed growth characteristics consistent with those observed in vivo during days 1-10 of postnatal development. From day 2 onwards, the volume fraction of seminiferous cords began to increase, while significant growth in cross-sectional area of the cords occurred only after day 6. In these culture conditions, germ cell proliferation and testicular architecture was consistent with that expected for the age of the tissue at time of explant. The proportion of dividing Sertoli cells declined from 15-20% at days 0-4 postpartum to below % at day 10 postpartum in the 6-h culture, and it was low or abolished in the 3-day culture at all time points. Activin and FSH together, but not singly, stimulated Sertoli cell proliferation in the 72-h culture. This paper presents a new approach to analysis of in vitro testis development. The combination of fragment culture and stereological analysis permits rigorous and detailed assessment of developmental changes in the postnatal testis.  相似文献   

20.
The wing margin of adult wings of Lepidoptera is defined by the position of a "bordering lacuna"(BL). During adult wing development, cell proliferation and scale formation proximal to this lacuna and programmed cell death distal to the lacuna are generally observed. To determine the effect of 20-hydroxyecdysone (20E) on these events, we cultured the silkworm pupal wings with or without 20E and analyzed regional specificity for cell death by the TUNEL method and cell proliferation by 5-bromodeoxyuridine labeling. Programmed cell death was induced by 20E after 5 days of culture and was detected only in the region distal to BL. Cell proliferation after 1 day of culture and scale formation after 5 days of culture were also inducible by 20E and detected in the region proximal to BL. These results suggest that two types of pupal wing cells, which are divided by the position of the BL, respond to ecdysteroid in different manners. Higher concentrations of 20E (more than 1,000 ng/ml) repressed the scale formation, while such repression could not be observed in the peripheral cell death even with 5,000 ng/ml 20E. The ecdysteroid may work both as a trigger to make the wing margin and scales and as a developmental timer to arrange these cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号