首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective attention and host-plant specialization   总被引:4,自引:0,他引:4  
The importance of attentional processing is summarized, and the different ways in which selective attention is maintained, explained. Examples from arthropods are highlighted. The significance of selective attentiveness for insect herbivores is discussed. In the finding and selecting of host plants, insects should adopt the strongest or most clear-cut cues that override noise, and they should channel the appropriate sensory information efficiently. It is argued that achieving this end is difficult and costly because the information capacity of the sensory system is far greater than the capacity of the central nervous system to process it. It is suggested that the need to obtain a clear signal quickly and efficiently may be one of the factors favoring reduced diet breadth, and that the existence of highly specific and sensitive receptor neurons is an adaptation to the information-processing problem.  相似文献   

2.
A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes.  相似文献   

3.
Self-localization requires that information from several sensory modalities and knowledge domains be integrated in order to identify an environment and determine current location and heading. This integration occurs by the convergence of highly processed sensory information onto neural systems in entorhinal cortex and hippocampus. Entorhinal neurons combine angular and linear self-motion information to generate an oriented metric signal that is then 'attached' to each environment using information about landmarks and context. Neurons in hippocampus use this signal to determine the animal's unique position within a particular environment. Elucidating this process illuminates not only spatial processing but also, more generally, how the brain builds knowledge representations from inputs carrying heterogeneous sensory and semantic content.  相似文献   

4.
The terrestrial environment is complex, with many parameters fluctuating on daily and seasonal basis. Plants, in particular, have developed complex sensory and signaling networks to extract and integrate information about their surroundings in order to maximize their fitness and mitigate some of the detrimental effects of their sessile lifestyles. Light and temperature each provide crucial insights on the surrounding environment and, in combination, allow plants to appropriately develop, grow and adapt. Cross-talk between light and temperature signaling cascades allows plants to time key developmental decisions to ensure they are ‘in sync’ with their environment. In this review, we discuss the major players that regulate light and temperature signaling, and the cross-talk between them, in reference to a crucial developmental decision faced by plants: to bloom or not to bloom?  相似文献   

5.
Heliothis subflexa and H. virescens are sister species that differ markedly in their hostplant specificity: the former is a specialist on one plant genus, the latter feeds on plants from many families. The behavioral threshold for rejection of deterrent chemicals is lower in larvae of H. subflexa than in those of H. virescens. In this paper, we examine the responses of the galeal styloconic sensilla of these larvae to stimulation by three chemicals, sucrose and inositol, which are phagostimulants, and sinigrin, a deterrent, in an attempt to determine the neural basis for the differences in feeding behavior between the species. The species difference could not be attributed to differences in firing rate of the deterrent-sensitive cells, differences in the ratio of responses to phagostimulants and deterrents, differences in the rates of adaptation of the sensory neurons, or differences in the extent of interactions between chemicals at the peripheral sensilla. We conclude that the differences between the species probably result from differences in processing sensory information within the central nervous system.  相似文献   

6.
Plants respond to herbivore attack by emitting complex mixtures of volatile compounds that attract herbivore enemies, both predators and parasitoids. Here, we explore whether these mixtures provide significant value as information cues in herbivore enemy attraction. Our survey indicates that blends of volatiles released from damaged plants are frequently specific depending on the type of herbivore and its age, abundance and feeding guild. The sensory perception of plant volatiles by herbivore enemies is also specific, according to the latest evidence from studies of insect olfaction. Thus, enemies do exploit the detailed information provided by plant volatile mixtures in searching for their prey or hosts, but this varies with the diet breadth of the enemy.  相似文献   

7.
Following the integration and modification of the sensory inputs in the spinal cord, the information is transmitted to the primary sensory cortex where the integrated information is further processed and perceived. Processing of the sensory information in the spinal cord has been intensively investigated. However, the mechanisms of how the inputs are processed in the cortex are still unclear. To know the correlation of the sensory processing in the dorsal horn and cortex, in vivo and in vitro patch-clamp recordings were made from rat dorsal horn and sensory cortex. Although dorsal horn neurons showed spontaneous and evoked EPSCs by noxious and non-noxious stimuli, most somatosensory neurons located at 100 to 1000 microm from the surface of the cortex exhibited an oscillatory activity and received synaptic inputs from non-noxious but not noxious receptors. These observations suggest that the synaptic responses in cortical neurons are processed in a more complex manner; and this may be due to the reciprocal synaptic connection between thalamus and cortex.  相似文献   

8.
Research in sensory physiology proves the usefulness of describing distinct functions of sensory systems from the point of view of information processing, neglecting energetic (metabolic) processes, which may occur simultaneously. On the other hand, complex metabolic processes play an important role in sensory reception and sensory communication. Adaptation — in quite a few situations resulting in an actual gain of sensory information — is based upon interacting metabolic processes. It is conceivable that various enzyme systems, such as coenzyme B, involved in the building and destruction of a particular exitatory substance, e. g., acetylcholine and cholinesterase, influence the speed of these different metabolic processes within the sensory cells. It is even possible to separate the damage done to these processes by using an electrophysiological recording of combined action potentials on the auditory nerve and accounting for the time course of adaptation according toRanke's adaptation theory. The human central nervous system selects the 100 bit/sec processed for conscious perception from the 109 bit/sec offered from all sensory receptors in two principal ways: (1) “Specific auditory information” is modulated by “unspecific” information processed through the reticular formation of the brain stem; (2) descending fiber systems alter selectively the information flow on every level of the auditory pathway. The filtered information perceived, in turn triggers a set of inborn and learned behavioral responses, such as speech and motor reaction, altogether representing appromaximately 107 bit/sec. Metabolic processes possibly involved in this optimizing system are largely unknown.  相似文献   

9.
10.
Neuronal correlates of a perceptual decision in ventral premotor cortex   总被引:11,自引:0,他引:11  
Romo R  Hernández A  Zainos A 《Neuron》2004,41(1):165-173
The ventral premotor cortex (VPC) is involved in the transformation of sensory information into action, although the exact neuronal operation is not known. We addressed this problem by recording from single neurons in VPC while trained monkeys report a decision based on the comparison of two mechanical vibrations applied sequentially to the fingertips. Here we report that the activity of VPC neurons reflects current and remembered sensory inputs, their comparison, and motor commands expressing the result; that is, the entire processing cascade linking the evaluation of sensory stimuli with a motor report. These findings provide a fairly complete panorama of the neural dynamics that underlies the transformation of sensory information into an action and emphasize the role of VPC in perceptual decisions.  相似文献   

11.
Ionic signaling in plant responses to gravity and touch   总被引:14,自引:1,他引:13  
Touch and gravity are two of the many stimuli that plants must integrate to generate an appropriate growth response. Due to the mechanical nature of both of these signals, shared signal transduction elements could well form the basis of the cross-talk between these two sensory systems. However, touch stimulation must elicit signaling events across the plasma membrane whereas gravity sensing is thought to represent transformation of an internal force, amyloplast sedimentation, to signal transduction events. In addition, factors such as turgor pressure and presence of the cell wall may also place unique constraints on these plant mechanosensory systems. Even so, the candidate signal transduction elements in both plant touch and gravity sensing, changes in Ca2+, pH and membrane potential, do mirror the known ionic basis of signaling in animal mechanosensory cells. Distinct spatial and temporal signatures of Ca2+ ions may encode information about the different mechanosignaling stimuli. Signals such as Ca2+ waves or action potentials may also rapidly transfer information perceived in one cell throughout a tissue or organ leading to the systemic reactions characteristic of plant touch and gravity responses. Longer-term growth responses are likely sustained via changes in gene expression and asymmetries in compounds such as inositol-1,4,5-triphosphate (IP3) and calmodulin. Thus, it seems likely that plant mechanoperception involves both spatial and temporal encoding of information at all levels, from the cell to the whole plant. Defining this patterning will be a critical step towards understanding how plants integrate information from multiple mechanical stimuli to an appropriate growth response.  相似文献   

12.
Mutational analysis of blue-light sensing in Arabidopsis   总被引:2,自引:1,他引:1  
Blue light regulates many physiological and developmental processes in higher plants through the action of multiple photosensory systems. The analysis of photomorphogenic mutants is leading to a better understanding of how the different photosensory systems mediate the wide range of responses observed in blue light. A review of the current literature on photomorphogenic mutants makes it apparent that redundancies exist in photoreceptor function. For example, many blue-light responses that have been shown to be regulated by a blue-light photosensory system are also under phytochrome control. The study of various light-response mutants suggests that a complex sensory network regulates light-mediated responses. This article attempts to piece together information regarding the sensory systems responsible for blue-light-regulated responses.  相似文献   

13.
Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of their internal degrees of freedom, they can be regarded as computational devices manipulating information. Landauer established that information is ultimately physical, and its manipulation subject to the entropic and energetic bounds of thermodynamics. Thus the fundamental costs of biological sensory adaptation can be elucidated by tracking how the information the system has about its environment is altered. These bounds are particularly relevant for small organisms, which unlike everyday computers, operate at very low energies. In this paper, we establish a general framework for the thermodynamics of information processing in sensing. With it, we quantify how during sensory adaptation information about the past is erased, while information about the present is gathered. This process produces entropy larger than the amount of old information erased and has an energetic cost bounded by the amount of new information written to memory. We apply these principles to the E. coli''s chemotaxis pathway during binary ligand concentration changes. In this regime, we quantify the amount of information stored by each methyl group and show that receptors consume energy in the range of the information-theoretic minimum. Our work provides a basis for further inquiries into more complex phenomena, such as gradient sensing and frequency response.  相似文献   

14.
15.
As an introduction to the main theme of this conference an overview of the organization of the tetrapod forebrain is presented with emphasis on the telencephalic representation of sensory and motor functions. In all classes of tetrapods, olfactory, visual, octavolateral, somatosensory and gustatory information reaches the telencephalon. Major differences exist in the telencephalic targets of sensory information between amphibians and amniotes. In amphibians, three targets are found: the lateral pallium for olfactory input, the medial pallium for visual and multisensory input, and the lateral subpallium for visual, octavolateral and somatosensory information. The forebrains of reptiles and mammals are similar in that the dorsal surface of their cerebral hemisphere is formed by a pallium with three major segments: (a) an olfactory, lateral cortex; (b) a 'limbic' cortex that forms the dorsomedial wall of the hemisphere, and (c) an intermediate cortex that is composed entirely of isocortex in mammals, but in reptiles (and birds) consists of at least part of the dorsal cortex (in birds the Wulst) and a large intraventricular protrusion, i.e. the dorsal ventricular ridge. In birds, the entire lateral wall of the hemisphere is involved in this expansion. The intermediate pallial segment receives sensory projections from the thalamus and contains modality-specific sensory areas in reptiles, birds and mammals. The most important differences between the intermediate pallial segment of amniotes concern motor systems.  相似文献   

16.
Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.  相似文献   

17.
Bayesian multisensory integration and cross-modal spatial links.   总被引:2,自引:0,他引:2  
Our perception of the word is the result of combining information between several senses, such as vision, audition and proprioception. These sensory modalities use widely different frames of reference to represent the properties and locations of object. Moreover, multisensory cues come with different degrees of reliability, and the reliability of a given cue can change in different contexts. The Bayesian framework--which we describe in this review--provides an optimal solution to deal with this issue of combining cues that are not equally reliable. However, this approach does not address the issue of frames of references. We show that this problem can be solved by creating cross-modal spatial links in basis function networks. Finally, we show how the basis function approach can be combined with the Bayesian framework to yield networks that can perform optimal multisensory combination. On the basis of this theory, we argue that multisensory integration is a dialogue between sensory modalities rather that the convergence of all sensory information onto a supra-modal area.  相似文献   

18.
呼吸道迷走神经感受器概述   总被引:6,自引:3,他引:3  
Yu J 《生理学报》2002,54(6):451-459
肺以及气道与外界环境之间存在着巨大的界面,因此需要有效的防御反射机制。呼吸道感受器是肺部神经反射的起始点,其重要性不言而喻,采用组织,解剖与电生理学方法,经过一个世纪的研究,我们对于呼吸道感受器的认识,特别对其结构的认识,仍然有限,据电生理实验结果,肺部感受器至少可被分为三大类;慢适应感受器,快适应感受器以及C纤维感受器,按血供来源,后者又可分为气道(体循环)与肺(肺循环)两类,近来发现呼吸道中存在着第四类感受器,它们由迷走神经的Aδ传入纤维传递冲动,其放电活动不同于上述各类,对肺充气反应阈值高,故称之为高阈值Aδ感受器,功能上前两类基本属于机械性感受器,而后两类可归为化学敏感性感受器,另外,用组织学方法,观察到气道内有一些神经内分泌细胞,它们可以散在分布,亦可集聚成小体。这些神经上皮小体受多种神经支配,其结构复杂,形态酪似感受器,虽然我们对其形态了解颇深,但对其放电形式一无所知,本文对以上各类感受器进行了评述与探讨。  相似文献   

19.
In most sensory systems, the sensory cortex is the place where sensation approaches perception. As described in this review, olfaction is no different. The olfactory system includes both primary and higher order cortical regions. These cortical structures perform computations that take highly analytical afferent input and synthesize it into configural odor objects. Cortical plasticity plays an important role in this synthesis and may underlie olfactory perceptual learning. Olfactory cortex is also involved in odor memory and association of odors with multimodal input and contexts. Finally, the olfactory cortex serves as an important sensory gate, modulating information throughput based on recent experience and behavioral state.  相似文献   

20.
In 1935 Edwin Boring proposed that each attribute of sensation reflects the activity of a different neural circuit. If this idea is valid, it could facilitate both psychophysical and neurophysiological research on sensory systems. We think it likely that Boring's formulation is correct for three reasons: 1) Different sensory attributes reflect conscious information about different parameters of a stimulus. To be measured by any device, each of these parameters must be individually computed. Different neural circuits would appear to be necessary for the nervous system to carry out these different computations. 2) Perceived information about different sensory attributes can be made to diverge by appropriate manipulations of the stimuli. If there is a rigorous relationship between conscious sensory experience and neural activity, such a divergence implies that different sensory attributes are served by different neural circuits. 3) Accurate information about a sensory attribute requires that a human observer's attention be focused on that attribute. Changes in direction of attention are thought to involve a process of switching from one neural circuit to another, and provide another way to cause perceived information about different sensory attributes to diverge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号