共查询到20条相似文献,搜索用时 0 毫秒
1.
Ubiquitylation is emerging as a versatile device for controlling cellular functions. Here, we propose that monoubiquitylation is rapidly induced by signalling events and allows the establishment of protein-protein interactions between monoubiquitylated proteins and partners that contain distinct ubiquitin-binding domains. We also put forward speculative models for the regulation of monoubiquitylation versus polyubiquitylation. 相似文献
2.
3.
《Autophagy》2013,9(4):436-437
Autophagy, a cellular program for organelle and protein turnover, represents primarily a cell survival mechanism. However, the role of autophagy in the regulation of apoptosis remains unclear. We have observed increases in morphological and biochemical indicators of autophagy in human lung from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we observed induction of autophagic markers in mouse lung subjected to chronic cigarette smoke exposure. Recently, we investigated the role of the autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) as a regulator of lung cell death. We found that LC3B knockout (LC3B-/-) mice subjected to chronic cigarette smoke exposure have reduced lung apoptosis, and resist airspace enlargement, relative to wild-type mice. We therefore examined the mechanisms by which LC3B can regulate apoptosis in epithelial cells. We found that LC3B forms a complex with the death receptor Fas in lipid rafts of epithelial cells, which requires the caveolae-resident protein caveolin-1. Genetic interference of caveolin-1 in epithelial cells augments cigarette smoke-induced apoptosis. Caveolin-1 knockout mice exhibit increased autophagic markers, apoptosis, and airspace enlargement in the lung in response to chronic cigarette smoke. These studies demonstrate that LC3B can promote tissue injury during chronic cigarette smoke exposure, and suggest a mechanism by which LC3B, through interactions with caveolin-1 and Fas, can regulate apoptosis. Targeting the autophagic pathway may represent an experimental therapeutic strategy when designing new approaches to COPD treatment. 相似文献
4.
Autophagy, a cellular program for organelle and protein turnover, represents primarily a cell survival mechanism. However, the role of autophagy in the regulation of apoptosis remains unclear. We have observed increases in morphological and biochemical indicators of autophagy in human lung from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we observed induction of autophagic markers in mouse lung subjected to chronic cigarette smoke exposure. Recently, we investigated the role of the autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) as a regulator of lung cell death. We found that LC3B knockout (LC3B(-/-)) mice subjected to chronic cigarette smoke exposure have reduced lung apoptosis, and resist airspace enlargement, relative to wild-type mice. We therefore examined the mechanisms by which LC3B can regulate apoptosis in epithelial cells. We found that LC3B forms a complex with the death receptor Fas in lipid rafts of epithelial cells, which requires the caveolae-resident protein caveolin-1. Genetic interference of caveolin-1 in epithelial cells augments cigarette smoke-induced apoptosis. Caveolin-1 knockout mice exhibit increased autophagic markers, apoptosis, and airspace enlargement in the lung in response to chronic cigarette smoke. These studies demonstrate that LC3B can promote tissue injury during chronic cigarette smoke exposure, and suggest a mechanism by which LC3B, through interactions with caveolin-1 and Fas, can regulate apoptosis. Targeting the autophagic pathway may represent an experimental therapeutic strategy when designing new approaches to COPD treatment. 相似文献
5.
Meyer HH 《Biochimica et biophysica acta》2005,1744(3):481-492
The Golgi apparatus in animal cells breaks down at the onset of mitosis and is later rebuilt in the two daughter cells. Two AAA ATPases, NSF and p97/VCP, have been implicated in regulating membrane fusion steps that lead to regrowth of Golgi cisternae from mitotic fragments. NSF dissociates complexes of SNARE proteins, thereby reactivating them to mediate membrane fusion. However, NSF has a second function in regulating SNARE pairing together with the ubiquitin-like protein GATE-16. p97/VCP, on the other hand, is involved in a cycle of ubiquitination and deubiquitination of an unknown target that governs Golgi membrane dynamics. Here, these findings are reviewed and discussed in the context of the increasingly evident role of ubiquitin in membrane traffic processes. 相似文献
6.
Meyer HH 《Biochimica et biophysica acta》2005,1744(2):108-119
The Golgi apparatus in animal cells breaks down at the onset of mitosis and is later rebuilt in the two daughter cells. Two AAA ATPases, NSF and p97/VCP, have been implicated in regulating membrane fusion steps that lead to regrowth of Golgi cisternae from mitotic fragments. NSF dissociates complexes of SNARE proteins, thereby reactivating them to mediate membrane fusion. However, NSF has a second function in regulating SNARE pairing together with the ubiquitin-like protein GATE-16. p97/VCP, on the other hand, is involved in a cycle of ubiquitination and deubiquitination of an unknown target that governs Golgi membrane dynamics. Here, these findings are reviewed and discussed in the context of the increasingly evident role of ubiquitin in membrane traffic processes. 相似文献
7.
Apoptosis is an organised ATP‐dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti‐oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer. 相似文献
8.
Arbiter of differentiation and death: Notch signaling meets apoptosis. 总被引:18,自引:0,他引:18
Notch-ligand interactions are a highly conserved mechanism that regulates cell fate decisions. Over the past few years, numerous observations have shown that this mechanism operates to regulate cell differentiation in an enormous variety of developmental and cell maturation processes. Recent studies indicate that in addition to cell differentiation, Notch signaling has direct effects on proliferation and programmed cell death. The picture emerging from these findings suggests that, depending on cellular and developmental context, Notch signaling may function as a general "arbiter" of cell fate, regulating differentiation potential, rate of proliferation, and apoptotic cell death. In this review, we briefly summarize the current knowledge of the structure and function of Notch receptors and discuss the recent evidence that Notch signaling regulates apoptotic cell death. The possible mechanisms of this effect and its potential implications for developmental biology, immunobiology, neuropathology, and tumor biology are discussed. 相似文献
9.
10.
Accumulating evidence indicates that there is a critical role of the ubiquitin/proteasome pathway in the regulation of apoptosis. Among the important molecules that couple these two fundamental cellular activities are members of the inhibitor of apoptosis (IAP) protein family. In addition to their well-studied ability to directly bind and inhibit caspases, many IAPs contain RING domains that are necessary and sufficient to cause ubiquitylation and subsequent proteasome-mediated proteolysis. This review summarizes recent findings about the ubiquitin protein ligase activity of IAPs, and considers possible mechanisms for substrate selectivity. 相似文献
11.
Deadly Conversations: Nuclear-Mitochondrial Cross-Talk 总被引:12,自引:0,他引:12
Neuronal damage following stroke or neurodegenerative diseases is thought to stem in part from overexcitation of N -methyl-D-aspartate (NMDA) receptors by glutamate. NMDA receptors triggered neurotoxicity is mediated in large part by activation of neuronal nitric oxide synthase (nNOS) and production of nitric oxide (NO). Simultaneous production of superoxide anion in mitochondria provides a permissive environment for the formation of peroxynitrite (ONOO-). Peroxynitrite damages DNA leading to strand breaks and activation of poly(ADP-ribose) polymerase-1 (PARP-1). This signal cascade plays a key role in NMDA excitotoxicity, and experimental models of stroke and Parkinson's disease. The mechanisms of PARP-1-mediated neuronal death are just being revealed. While decrements in ATP and NAD are readily observed following PARP activation, it is not yet clear whether loss of ATP and NAD contribute to the neuronal death cascade or are simply a biochemical marker for PARP-1 activation. Apoptosis-inducing factor (AIF) is normally localized to mitochondria but following PARP-1 activation, AIF translocates to the nucleus triggering chromatin condensation, DNA fragmentation and nuclear shrinkage. Additionally, phosphatidylserine is exposed and at a later time point cytochrome c is released and caspase-3 is activated. In the setting of excitotoxic neuronal death, AIF toxicity is caspase independent. These observations are consistent with reports of biochemical features of apoptosis in neuronal injury models but modest to no protection by caspase inhibitors. It is likely that AIF is the effector of the morphologic and biochemical events and is the commitment point to neuronal cell death, events that occur prior to caspase activation, thus accounting for the limited effects of caspase inhibitors. There exists significant cross talk between the nucleus and mitochondria, ultimately resulting in neuronal cell death. In exploiting this pathway for the development of new therapeutics, it will be important to block AIF translocation from the mitochondria to the nucleus without impairing important physiological functions of AIF in the mitochondria. 相似文献
12.
13.
14.
15.
16.
Regulation of apoptosis by the ubiquitin and proteasome pathway 总被引:5,自引:1,他引:5
Wójcik C 《Journal of cellular and molecular medicine》2002,6(1):25-48
Regulated proteolysis plays important roles in cell physiology as well as in pathological conditions. In most of the cases, regulated proteolysis is carried out by the ubiquitin- and proteasome-dependent proteolytic system, which is also in charge of the bulk of cytoplasmic proteolysis. However, apoptosis or the process of programmed cell death is regulated by a different proteolytic system, i.e . by caspases, a family of specialized cysteine proteases. Nevertheless, there is plenty of evidence of a crosstalk between the apoptotic pathways and the ubiquitin and proteasome system, whose function in apoptosis appears to be very complex. Proteasome inhibitors induce apoptosis in multiple cell types, while in other they are relatively harmless or even prevent apoptosis induced by other stimuli. Proteasomes degrade specific proteins during apoptosis, but on the other hand some components of the proteasome system are degraded by caspases. The knowledge about the involvement of the ubiquitin- and proteasome-dependent system in apoptosis is already clinically exploited, since proteasome inhibitors are being tested as experimental drugs in the treatment of cancer and other pathological conditions, where manipulation of apoptosis is desirable. 相似文献
17.
18.
19.
Zhoushuai Qin Wandong Jiang Guifen Wang Ying Sun Wei Xiao 《Apoptosis : an international journal on programmed cell death》2018,23(1):16-26
Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent. 相似文献
20.
The p53 tumor suppressor protein is a major regulator of cell growth arrest and apoptosis in response to DNA damage. Both p53 function and stability are tightly controlled by Mdm2, which binds to the p53 N-terminus and targets p53 for ubiquitin-mediated proteolysis. Previous studies suggest that adrenalectomy-induced neuronal apoptosis is p53-dependent. Here we demonstrate both nuclear accumulation and functional activation of p53 protein in apoptotic hippocampal neurons from adrenalectomized rats. Increased p53 expression occurred despite the accumulation of its negative regulator, Mdm2, and the formation of p53-Mdm2 complexes. The persistence of p53 expression was explained by a striking decrease in free ubiquitin in p53-positive neurons. The addition of exogenous ubiquitin to p53-Mdm2 complexes from apoptotic neurons restored p53 degradation. These findings demonstrate a novel mechanism of p53 stabilization mediated by decreased ubiquitin levels. Regulation of free ubiquitin may therefore be an effective way to modulate p53-dependent apoptosis in certain cell types. 相似文献