首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hydroxamic acids isolated from maize extracts, 2,4-dihydroxy-7-methoxy-1,4-(2H)-benzoxazin-3(4H)-one (DIMBOA) and the 2-O-beta-d-glucopyranoside of DIMBOA, inhibit photophosphorylation by spinach chloroplasts. Both cyclic and noncyclic photophosphorylations were inhibited to the same extent. The concentrations producing 50% inhibition for DIMBOA and its glucoside were about 1 and 4 millimolar, respectively. These compounds inhibit coupled electron transport but do not affect basal or uncoupled electron transport. Both acids inhibit the ATPase activities of membrane-bound coupling factor 1 (CF(1)) and of purified CF(1). On the basis of these results, it is concluded that DIMBOA and its glucoside act as energy transfer inhibitors of photophosphorylation.  相似文献   

2.
Quercetin interaction with the chloroplast ATPase complex   总被引:1,自引:0,他引:1  
1. Quercetin, a flavonoid which acts as an energy transfer inhibitor in photophosphorylation is shown to inhibit the P-ATP exchange activity of membrane-bound CF1 and the ATPase activity of isolated CF1. Quercetin, affects also the proton uptake in chloroplasts in a manner similar to that of dicyclohexylcarbodiimide. 2. The light-dependent proton uptake in EDTA-treated chloroplasts is stimulated by quercetin. In untreated chloroplasts quercetin has a dual effect: it enhances at pH above 7.5 while at lower pH values it decreases the extent of H+ uptake. Similar effects were obtained with dicyclohexylcarbodiimide. 3. Like quercetin, dicyclohexylcarbodiimide was also found to inhibit the ATPase activity of isolated CF1. 4. Quercetin inhibits uncoupled electron transport induced by either EDTA-treatment of chloroplasts or by addition of uncouplers. Quercetin restores H+ uptake in both types of uncoupled chloroplasts. 5. The mode of action of quercetin and dicyclohexylcarbodiimide in photophosphorylation is discussed, and interaction with both CF1 and F0 is suggested.  相似文献   

3.
In leaves and intact chloroplasts, oxidation and reduction have been shown previously to regulate the ATPase activity of thylakoids. Illumination of spinach chloroplast thylakoids in the presence of dithiothreitol, which activates the ability of thylakoids to catalyze sustained ATP hydrolysis in the dark, causes increased incorporation of N-ethylmaleimide into the gamma subunit of coupling factor 1 (CF1). A disulfide bond in the gamma subunit is reduced during activation. The residues involved in this disulfide bond are the same as those in the disulfide linkage reduced during dithiothreitol activation of soluble CF1. The disulfide and dithiol forms of the gamma subunit may be separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. N-Ethylmaleimide is preferentially incorporated in the dark into the reduced form of the gamma subunit of CF1 in thylakoids previously exposed to dithiothreitol. Only a subpopulation of the CF1 in thylakoids is susceptible to dithiothreitol reduction and subsequent reaction with N-ethylmaleimide in the dark. Alkylation of the thiol groups exposed by reduction of the disulfide bond protects ATPase activity from inhibition by oxidants. At a given value of the transmembrane pH differential, photophosphorylation rates in dithiothreitol-activated thylakoids can be as much as seven to eight times those of nonactivated controls. N-Ethylmaleimide treatment of activated thylakoids in the dark prevents the loss of the stimulation of ATP synthesis on storage of the thylakoids. Photophosphorylation by intact chloroplasts lysed in assay mixtures is also activated in comparison to that by washed thylakoids. At a low ADP concentration, the rate of photophosphorylation approaches saturation as delta pH increases. These results suggest that the gamma subunit of CF1 plays an important role in regulation of ATP synthesis and hydrolysis.  相似文献   

4.
Inhibition of photophosphorylation by kaempferol   总被引:2,自引:2,他引:0       下载免费PDF全文
Kaempferol, a naturally occurring flavonol, inhibited coupled electron transport and both cyclic and noncyclic photophosphorylation in isolated pea (Pisum sativum) chloroplasts. Over a concentration range which gave marked inhibition of ATP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids. It is suggested that kaempferol acts as an energy transfer inhibitor.  相似文献   

5.
F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.  相似文献   

6.
The effects of spegazzinine, a dihydroindole alkaloid, on various energy-transducing functions of chloroplasts were studied. The following observations were made, (i) Spegazzinine inhibited both cyclic and noncyclic photophosphorylation in isolated spinach chloroplast. The I50 value was about 80 μm. Over a concentration range which gave marked inhibition of ÀTP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids, while the fraction of electron transport stimulated by coupled phosphorylation was reduced to the basal level by spegazzinine. (ii) The regulatory effect of low concentrations of ATP on proton movements and electron transport was diminished by the alkaloid, (iii) Spegazzinine also inhibited with similar efficiency the ATPase activities of membrane-bound coupling factor 1 (CF1) and of purified CF1. One mole of spegazzinine per mole of CF1 seemed to be required to inhibit the ATPase activity, (iv) The allosteric effect of ADP on ATPase activity was not affected by spegazzinine. (v) On the basis of these results it is concluded that spegazzinine acts as an energy transfer inhibitor of hotophosphorylation and that its site of action may be at or near the catalytic site of ATPase.  相似文献   

7.
The sensitivity of the catalytic activities of the D. salina chloroplast coupling factor 1 (CF1) to chemical modification by N-ethylmaleimide has been investigated. When D. salina thylakoid membranes are treated with N-ethylmaleimide, both photophosphorylation and the inducible CF1 ATPase activity are partially (approx. 60%) inhibited. The inhibition of both activities does not require the presence of a proton-motive force, and the inhibition of photophosphorylation is directly related to the N-ethylmaleimide-covalent modification of CF1 as shown by the time-course for the inhibition and the maximal extent of inhibition. Treatment of the purified, latent, D. salina CF1 with low concentrations of N-ethylmaleimide also results in the partial (approx. 60%) inhibition of the inducible ATPase activity (I50 approximately 50 microM). The inhibition does not require the presence of the chemical modifier during the activation of the enzyme. N-ethylmaleimide-induced inhibition of the ATPase activity of either membrane-bound or solubilized CF1 is partially reversed by either prolonged incubation at low concentrations of N-ethylmaleimide or short incubation times at high concentrations of N-ethylmaleimide. The results are interpreted as indicating multiple binding sites on the D. salina CF1 that have different rates of reactivity with N-ethylmaleimide. Those sites (or site) that react rapidly with N-ethylmaleimide cause(s) an inhibition of both ATP synthase and ATPase activities, whereas those sites (or site) that react more slowly partially restore(s) the original ATPase activity. The effects of N-ethylmaleimide on the catalytic activity of D. salina CF1 are probably mediated by N-ethylmaleimide-induced conformational changes of the enzyme.  相似文献   

8.
在细菌中表达的叶绿体atpE基因产物ε亚基蛋白对不同方式激活的叶绿体AT-Pase均有抑制作用,而其抗血清则促进AT-Pase活力。E.coli中表达的ε亚基蛋白在光合磷酸化反应中对循环和非循环光合磷酸化都有促进作用,其抗血清对循环光合磷酸化有抑制作用,而对非循环光合磷酸化则起促进作用。  相似文献   

9.
Photophosphorylation was discovered in chloroplasts by D. Arnon and coworkers, and in bacterial ‘chromatophores’ (intercytoplasmic membranes) by A. Frenkel. Initial low rates were amplified by adding electron-carrying compounds such as FMN, later shown to support the ‘pseudocyclic’ electron flow. ATP synthesis, and coupling to electron flow, was detected accompanying linear electron flow from H2O to either NADP+ or ferricyanide. Another pattern of electron flow supporting photophosphorylation was that of a cycle around Photosystem I (PS I). Isolation and analysis of the ATP synthase showed, as with mitochondrial and bacterial analogues, an intrinsic membrane complex (CF0) and an extrinsic complex (CF1). CF1 is a latent ATPase, activated additively by the high-energy state of the thylakoids, and by reduction of a disulfide bond on the gamma subunit. Once reduced, ATP synthesis occurs at lower energy levels. The search for an ‘intermediate’ linking electron flow and ATP synthesis led to the discovery of post-illumination ATP synthesis by thylakoids, where turnover occurs in the dark. Once interpreted by P.Mitchell's chemiosmotic hypothesis, this led to the discovery of light-driven proton uptake into the thylakoid lumen, with accompanying Cl intake and Mg2+ and K+ output. Chemiosmosis was confirmed in several ways, including ATP synthesis in the dark due to an acid-to-base transition of thylakoids, and photophosphorylation accomplished in artificial lipid vesicles containing both the proton-pumping bacterial rhodopsin and a mitochondrial ATPase complex. The now generally accepted chemiosmotic interpretation is able to clarify some other aspects of photosynthesis as well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
A new bifunctional maleimide that contains a disulfide bond has been synthesized. This maleimide, dithiobis-N-ethylmaleimide (DTEM), like another bifunctional maleimide, o-phenylenebismaleimide, is about 500-fold more effective as an inhibitor of photophosphorylation than N-ethylmaleimide. Thylakoids must be illuminated in the presence of DTEM before the assay of phosphorylation for the inhibition to occur. Phosphoryalation in thylakoids treated with DTEM in the light is uncoupled and proton permeability of the treated thylakoids is enhanced. This uncoupling of photophosphorylation in thylakoids treated with DTEM can be reversed by thiol compounds. The addition of 50 mM dithiothreitol restores H+ uptake in thylakoids treated with DTEM in the light to control levels and partially reverses the inhibition of phosphorylation. Evidence is provided to show that DTEM cross-links groups within the gamma subunit of the coupling factor 1, and that the cross-link is broken by high concentrations of thiols. These results suggest that cross-linking is the cause for the increased proton permeability in thylakoids treated with bifunctional maleimides in the light.  相似文献   

11.
The light-induced H+ release from thylakoids, which can be observed under completely uncoupled conditions, was inhibited by the SH reagent N-ethylmaleimide (NEM) and its analogs, while the conventional H+ uptake and electron transfer were not affected. The half-inhibiting concentration of NEM for the H+ release was 10 mM and 4 mM in thylakoids in the presence of nigericin and in CF1-depleted thylakoids, respectively. The inhibitory effect increased with the increase in hydrophobicity of the NEM analogs: N-methylmaleimide less than N-ethylmaleimide less than N-phenylmaleimide. It is suggested that SH groups in hydrophobic interior within the membrane are essential to the release of protons.  相似文献   

12.
J G Spencer  M J Wimmer 《Biochemistry》1985,24(15):3884-3890
The ATP-H2O back-exchange reaction catalyzed by membrane-bound chloroplast coupling factor 1 (CF1) in the light is known to be extensive; each reacting ATP molecule nearly equilibrates its gamma-PO3 oxygens with H2O before it dissociates from the enzyme. Pi, ASi, ADP, and GDP, alternate substrates of photophosphorylation, each inhibit the exchange reaction. At all concentrations of these substrate/inhibitor molecules tested, the high extent of exchange per molecule of ATP that reacts remains the same, while the number of ATP molecules experiencing exchange decreases. Thus, these inhibitors appear to act in a competitive-type manner, decreasing ATP turnover, as opposed to modulating the rate constants responsible for the partitioning of E X ATP during the exchange reaction. This is consistent with the identity of CF1 catalytic sites for ATP-H2O back-exchange and ATP synthesis. Carbonyl cyanide m-chlorophenylhydrazone and NH4Cl (uncouplers of photophosphorylation) and phloridzin (an energy-transfer inhibitor) also lower the rate of ATP-H2O back-exchange; they too are found to act by decreasing the turnover of the ATP pool, not the extent of exchange per reacting ATP molecule. The extent of ATP-H2O forward oxygen exchange, which occurs during net ATP synthesis prior to product dissociation, is unaffected by uncouplers, whether catalyzed by native CF1 (ATPase latent) or the dithiothreitol/light-activated ATPase form. The mode of NH4Cl inhibition of the ATP synthesis reaction, therefore, is not through a change in the partitioning of the E X ATP complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Götz Harnischfeger 《BBA》1978,503(3):473-479
4-Phenylspiro[furan-2(3H),1-phtalan]3,3′-dione (fluorescamine) was used to covalently modify amino groups of thylakoids. Subsequently its effect on parameters of energy transfer and phosphorylating activity was assessed. While electron transport, the extent of proton uptake, 515 nm change and 9-aminoacridine quench were relatively resistant to such treatment, the functions connected to coupling factor 1, namely ATP formation by acid/base transition, ATPase activity and photophosphorylation were affected much earlier. Photophosphorylation appears to be the most sensitive. The data are interpreted as indicating an involvement of free amino groups in energy transfer.  相似文献   

14.
4-Phenylspiro [furan-2(3H),1-phtalan]3,3'-dione (fluorescamine) was used to covalently modify amino groups of thylakoids. Subsequently its effect on parameters of energy transfer and phosphorylating activity was assessed. While electron transport, the extent of proton uptake, 515 nm change and 9-aminoacridine quench were relatively resistant to such treatment, the functions connected to coupling factor 1, namely ATP formation by acid/base transition, ATPase activity and photophosphorylation were affected much earlier. Photophosphorylation appears to be the most sensitive. The data are interpreted as indicating an involvement of free amino groups in energy transfer.  相似文献   

15.
The ATP synthase of chloroplasts consists of the proton channel, CF0, and the catalytic part, CF1, which carries nucleotide-binding sites on subunits alpha and beta. The still poorly understood interaction between CF0 and the catalytic sites on CF1 is mediated by the smaller subunits gamma, delta and epsilon of CF1. We investigated the ability of purified delta to block proton leakage through CF0 channels after their exposure by removal of the CF1 counterpart. Thylakoids were partially depleted of CF1 by EDTA treatment. This increased their proton permeability and thereby reduced the rate of photophosphorylation. Subunit delta was isolated and purified by FPLC [Engelbrecht, S. and Junge, W. (1987) FEBS Lett. 219, 321-325]. Addition of delta to EDTA-treated thylakoids reconstituted high rates of phenazine-methosulfate-mediated photophosphorylation. Since delta does not interact with nucleotides by itself, the reconstitution was due to a reduction of the proton leakage through open CF0 channels. The molar ratio of purified delta over exposed CF0, which started to elicit this effect, was 3:1. However, if delta was added together with purified CF1 lacking delta, in a 1:1 molar ratio, the relative amount over exposed CF0 was as low as 0.06. This corroborated our previous conclusion [Lill, H., Engelbrecht, S., Sch?nknecht, G. and Junge, W. (1986) Eur. J. Biochem. 160, 627-634] that only a very small fraction of exposed CF0 was actually proton-conducting but with a very high unit conductance. CF1 including delta was apparently rebound preferentially to open CF0 channels. Although the ability of delta to control proton conduction through CF0 was evident, it remains to be established whether delta acts as a gated proton valve or as a conformational transducer in the integral CF0CF1 ATPase.  相似文献   

16.
1. Further evidence that the uptake of [14C]hexylamine, determined by centrifugal filtration of spinach chloroplast thylakoids through silicone fluid layers, gives precise estimations of light-induced H+ concentration gradients (deltapH) is presented. DeltapH was independent of the amount of thylakoids used or of the concentration of hexylamine. Moreover, hexylamine uptake was sensitive to the osmolarity of the suspending medium. 2. Internal H+ concentration ([H+]in) is proportional to the rate of electron flow when light intensity was used to vary these parameters. Proportionality was still observed in the presence of 0.1 and 1.0 muM gramicidin D. When, however, [H+]in and electron flow were varied by increasing the concentration of gramicidin D, at constant light intensity the rate of electron flow was approximately proportional to 1/[H]in. 3. The phosphorylation efficiency (P/e2 ratio) falls with decreasing light intensity or increasing concentrations of the phosphorylation inhibitor, 4'-deoxyphlorizin. The proportionality between the rate of electron flow and [H+]in allows the calculation of the rate of nonphosphorylating (basal) electron flow if [H+]in under phosphorylating conditions is known. The contribution of basal electron flow, a consequence of passive efflux of H+ from the thylakoids, to the overall rate of electron flow increases as the rate of phosphorylation decreases. P/e2 ratios calculated using rates of electron flow from which the basal component has been subtracted are constant. A calculated P/e2 ratio of about 1.3 is obtained. 4. It is shown that the reciprocal of the phosphorylation efficiency should be proportional to 1/[H+]in2 when these parameters are varied using light intensity. This relationship was verified and provided an estimate of the P/e2 at infinite [H+]in. This value was 1.3. These results provide further evidence that a H+ electrochemical gradient serves to couple photophosphorylation to electron flow and that the rate of phosphorylation is proportional to [H+]in3. That is, three H+ are translocated out of thylakoids for each adenosine triphosphate formed.  相似文献   

17.
Effects of various temperatures on the rates of electron transport between two photosystems, the light-induced uptake of protons, kinetics of proton efflux from the chloroplasts in the dark and photophosphorylation were studied in isolated chloroplasts. There are correlations between the physical state of thylakoid membrane and the rates of electron- and proton transport processes. The temperature dependence of "structural" parameter (fluidity of lipids in membrane) as well as the rates of electron- and proton transport processes reveal the breaks under the same temperatures. Stimulation of photophosphorylation by temperature increasing correlates with the heat activation of chloroplasts latent ATPase due to thermoinduced structural changes in the heat activation of chloroplasts latent ATPase due to thermoinduced structural changes in the protein part of CF0-CF1 complex. The rate of photophosphorylation also correlates with the physical state of membrane lipids. Thermoinduced "melting" of the thylakoid membrane inhibits the ATP formation because of a decrease in photosystem 2 photochemical activity and stimulation of membrane conductivity for protons.  相似文献   

18.
In this work, we studied theoretically the effects of diffusion restrictions and topological factors that could influence the efficiency of energy coupling in the heterogeneous lamellar system of higher plant chloroplasts. Our computations are based on a mathematical model for electron and proton transport in chloroplasts coupled to ATP synthesis in chloroplasts that takes into account the nonuniform distribution of electron transport and ATP synthase complexes in the thylakoids of grana and stroma. Numerical experiments allowed the lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids to be simulated under different metabolic conditions (in the state of photosynthetic control and under conditions of photophosphorylation). This model also provided an opportunity to simulate the effects of steric constraints (the extent of appression of thylakoids in grana) on the rates of non-cyclic electron transport and ATP synthesis. This model demonstrated that there might be two mechanisms of regulation of electron and proton transport in chloroplasts: 1) slowing down of non-cyclic electron transport due to a decrease in the intra-thylakoid pH, and 2) retardation of plastoquinone reduction due to slow diffusion of protons inside the narrow gap between the thylakoids of grana. Numerical experiments for model systems that differ with respect to the arrangement of thylakoids in grana allowed the effects of osmolarity on the photophosphorylation rate in chloroplasts to be explained.  相似文献   

19.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

20.
The effects of squamocin ( 1 ), bullatacin ( 2 ) and motrilin ( 3 ), 3 bis-tetrahydrofuran Annonaceous acetogenins, isolated from Annona purpurea (Annonaceae), were investigated on several photosynthetic activities in spinach thylakoids. The results indicated that compounds 1 – 3 significantly inhibited both ATP synthesis and uncoupled electron transport. In addition, they enhanced light-activated Mg2+-ATPase, and basal electron flow. Therefore, acetogenins 1 – 3 behave as uncouplers and Hill reaction inhibitors. Natural products 1 – 3 did not affect photosystem I (PSI) activity but they inhibited photosystem II (PSII) electron flow. The study of the partial PSII reactions from H2O to DCPIPox, H2O to SiMo and diphenylcarbazide to DCPIP established that the site of inhibition was at the oxygen-evolving complex (OEC). Chlorophyll a fluorescence measurements confirmed the behavior of the Annonaceous acetogenins as water-splitting enzyme inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号