首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The SHR3 gene of Saccharomyces cerevisiae encodes an integral membrane component of the endoplasmic reticulum (ER) with four membrane-spanning segments and a hydrophilic, cytoplasmically oriented carboxyl-terminal domain. Mutations in SHR3 specifically impede the transport of all 18 members of the amino acid permease (aap) gene family away from the ER. Shr3p does not itself exit the ER. Aaps fully integrate into the ER membrane and fold properly independently of Shr3p. Shr3p physically associates with the general aap Gap1p but not Sec61p, Gal2p, or Pma1p in a complex that can be purified from N-dodecylmaltoside-solubilized membranes. Pulse-chase experiments indicate that the Shr3p-Gap1p association is transient, a reflection of the exit of Gap1p from the ER. The ER-derived vesicle COPII coatomer components Sec13p, Sec23p, Sec24p, and Sec31p but not Sar1p bind Shr3p via interactions with its carboxyl-terminal domain. The mutant shr3-23p, a nonfunctional membrane-associated protein, is unable to associate with aaps but retains the capacity to bind COPII components. The overexpression of either Shr3p or shr3-23p partially suppresses the temperature-sensitive sec12-1 allele. These results are consistent with a model in which Shr3p acts as a packaging chaperone that initiates ER-derived transport vesicle formation in the proximity of aaps by facilitating the membrane association and assembly of COPII coatomer components.  相似文献   

2.
Here, we show that efficient transport of membrane and secretory proteins from the ER of Saccharomyces cerevisiae requires concentrative and signal-mediated sorting. Three independent markers of bulk flow transport out of the ER indicate that in the absence of an ER export signal, molecules are inefficiently captured into coat protein complex II (COPII)-coated vesicles. A soluble secretory protein, glycosylated pro-alpha-factor (gpalphaf), was enriched approximately 20 fold in these vesicles relative to bulk flow markers. In the absence of Erv29p, a membrane protein that facilitates gpalphaf transport (Belden and Barlowe, 2001), gpalphaf is packaged into COPII vesicles as inefficiently as soluble bulk flow markers. We also found that a plasma membrane protein, the general amino acid permease (Gap1p), is enriched approximately threefold in COPII vesicles relative to membrane phospholipids. Mutation of a diacidic sequence present in the COOH-terminal cytosolic domain of Gap1p eliminated concentrative sorting of this protein.  相似文献   

3.
Formation of ER-derived protein transport vesicles requires three cytosolic components, a small GTPase, Sar1p, and two heterodimeric complexes, Sec23/24p and Sec13/31p, which comprise the COPII coat. We investigated the role of Lst1p, a Sec24p homologue, in cargo recruitment into COPII vesicles in Saccharomyces cerevisiae. A tagged version of Lst1p was purified and eluted as a heterodimer complexed with Sec23p comparable to the Sec23/24p heterodimer. We found that cytosol from an lst1-null strain supported the packaging of alpha-factor precursor into COPII vesicles but was deficient in the packaging of Pma1p, the essential plasma membrane ATPase. Supplementation of mutant cytosol with purified Sec23/Lst1p restored Pma1p packaging into the vesicles. When purified COPII components were used in the vesicle budding reaction, Pma1p packaging was optimal with a mixture of Sec23/24p and Sec23/Lst1p; Sec23/Lst1p did not replace Sec23/24p. Furthermore, Pma1p coimmunoprecipitated with Lst1p and Sec24p from vesicles. Vesicles formed with a mixture of Sec23/Lst1p and Sec23/24p were similar morphologically and in their buoyant density, but larger than normal COPII vesicles (87-nm vs. 75-nm diameter). Immunoelectronmicroscopic and biochemical studies revealed both Sec23/Lst1p and Sec23/24p on the membranes of the same vesicles. These results suggest that Lst1p and Sec24p cooperate in the packaging of Pma1p and support the view that biosynthetic precursors of plasma membrane proteins must be sorted into ER-derived transport vesicles. Sec24p homologues may comprise a more complex coat whose combinatorial subunit composition serves to expand the range of cargo to be packaged into COPII vesicles. By changing the geometry of COPII coat polymerization, Lst1p may allow the transport of bulky cargo molecules, polymers, or particles.  相似文献   

4.
Secretory proteins are transported from the endoplasmic reticulum (ER) in vesicles coated with coat protein complex II (COPII). To investigate the molecular mechanism of protein sorting into COPII vesicles, we have developed an in vitro budding reaction comprising purified coat proteins and cargo reconstituted proteolipsomes. Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Recombinant Emp46/47p proteins and the ER resident protein Ufe1p were reconstituted into liposomes whose composition resembles yeast ER membranes. When the proteoliposomes were mixed with COPII proteins and GMP-PNP, Emp46/47p, but not Ufe1p, were concentrated into COPII vesicles. We also show here that reconstituted Emp47p accelerates the GTP hydrolysis by Sar1p as stimulated by its GTPase-activating protein, Sec23/24p, both of which are components of the COPII coat. Furthermore, this GTP hydrolysis decreases the error of cargo sorting. We suggest that GTP hydrolysis by Sar1p promotes exclusion of improper proteins from COPII vesicles.  相似文献   

5.
Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Delta mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.  相似文献   

6.
K. J. Roberg  S. Bickel  N. Rowley    C. A. Kaiser 《Genetics》1997,147(4):1569-1584
The SEC13 gene was originally identified by temperature-sensitive mutations that block all protein transport from the ER to the Golgi. We have found that at a permissive temperature for growth, the sec13-1 mutation selectively blocks transport of the nitrogen-regulated amino acid permease, Gap1p, from the Golgi to the plasma membrane, but does not affect the activity of constitutive permeases such as Hip1p, Can1p, or Lyp1p. Different alleles of SEC13 exhibit different relative effects on protein transport from the ER to the Golgi, or on Gap1p activity, indicating distinct requirements for SEC13 function at two different steps in the secretory pathway. Three new genes, LST4, LST7, and LST8, were identified that are also required for amino acid permease transport from the Golgi to the cell surface. Mutations in LST4 and LST7 reduce the activity of the nitrogen-regulated permeases Gap1p and Put4p, whereas mutations in LST8 impair the activities of a broader set of amino acid permeases. The LST8 gene encodes a protein composed of WD-repeats and has a close human homologue. The LST7 gene encodes a novel protein. Together, these data indicate that SEC13, LST4, LST7, and LST8 function in the regulated delivery of Gap1p to the cell surface, perhaps as components of a post-Golgi secretory-vesicle coat.  相似文献   

7.
We previously identified Sys1p as a high copy number suppressor of Ypt6 GTPase-deficient yeast mutants that are defective in endosome-to-Golgi transport. Here, we show that Sys1p is an integral membrane protein that resides on a post-endoplasmic reticulum (ER) organelle(s). Affinity studies with detergent- solubilized yeast proteins showed that the C-terminal 53 amino acid tail of Sys1p binds effectively to the cytoplasmic Sec23p-Sec24p COPII subcomplex. This binding required a di-acidic Asp-Leu-Glu (DXE) motif, previously shown to mediate efficient ER export of the vesicular stomatitis virus glycoprotein in mammalian cells. In Sys1p, a Glu-Leu-Glu (EXE) sequence could not substitute for the (DXE) motif. Mutations of the (DXE) sequence resulted in ER retention of approximately 30% of the protein at steady state, whereas addition of the Sys1p tail to an ER-resident membrane protein led to an intracellular redistribution of the chimeric protein. Our study demonstrates for the first time that, in yeast, a di-acidic sequence motif can act as a sorting signal for cargo selection during the formation of transport vesicles at the ER by direct binding to COPII component(s).  相似文献   

8.
The yeast plasma membrane H(+)-ATPase Pma1p is one of the most abundant proteins to traverse the secretory pathway. Newly synthesized Pma1p exits the endoplasmic reticulum (ER) via COPII-coated vesicles bound for the Golgi. Unlike most secreted proteins, efficient incorporation of Pma1p into COPII vesicles requires the Sec24p homolog Lst1p, suggesting a unique role for Lst1p in ER export. Vesicles formed with mixed Sec24p-Lst1p coats are larger than those with Sec24p alone. Here, we examined the relationship between Pma1p biosynthesis and the requirement for this novel coat subunit. We show that Pma1p forms a large oligomeric complex of >1 MDa in the ER, which is packaged into COPII vesicles. Furthermore, oligomerization of Pma1p is linked to membrane lipid composition; Pma1p is rendered monomeric in cells depleted of ceramide, suggesting that association with lipid rafts may influence oligomerization. Surprisingly, monomeric Pma1p present in ceramide-deficient membranes can be exported from the ER in COPII vesicles in a reaction that is stimulated by Lst1p. We suggest that Lst1p directly conveys Pma1p into a COPII vesicle and that the larger size of mixed Sec24pLst1p COPII vesicles is not essential to the packaging of large oligomeric complexes.  相似文献   

9.
In Saccharomyces cerevisiae, vesicles that carry proteins from the ER to the Golgi compartment are encapsulated by COPII coat proteins. We identified mutations in ten genes, designated LST (lethal with sec-thirteen), that were lethal in combination with the COPII mutation sec13-1. LST1 showed synthetic-lethal interactions with the complete set of COPII genes, indicating that LST1 encodes a new COPII function. LST1 codes for a protein similar in sequence to the COPII subunit Sec24p. Like Sec24p, Lst1p is a peripheral ER membrane protein that binds to the COPII subunit Sec23p. Chromosomal deletion of LST1 is not lethal, but inhibits transport of the plasma membrane proton-ATPase (Pma1p) to the cell surface, causing poor growth on media of low pH. Localization by both immunofluorescence microscopy and cell fractionation shows that the export of Pma1p from the ER is impaired in lst1Delta mutants. Transport of other proteins from the ER was not affected by lst1Delta, nor was Pma1p transport found to be particularly sensitive to other COPII defects. Together, these findings suggest that a specialized form of the COPII coat subunit, with Lst1p in place of Sec24p, is used for the efficient packaging of Pma1p into vesicles derived from the ER.  相似文献   

10.
Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.  相似文献   

11.
The general amino acid permease (Gap1p) of Saccharomyces cerevisiae is an integral membrane protein that contains 12 hydrophobic regions predicted to be membrane-spanning segments. A topological reporter construct, encoding an internal 53-amino acid peptide of invertase (Suc2p) containing three Asp-X-Ser/Thr glycosylation sites, was inserted in-frame into the hydrophilic NH(2)- and COOH-terminal domains and each of the 11 hydrophilic loops that separate the 12 hydrophobic segments of Gap1p. The resulting 13 gene sandwich fusion proteins were expressed in a gap1Delta null mutant strain; 9 of these retain amino acid transport activity and are folded and correctly targeted to the plasma membrane. The glycosylation state of each of the fusion proteins was monitored; the results indicate that all 12 hydrophobic segments of Gap1p span the membrane, and the NH(2) and COOH termini are cytoplasmically oriented. These results were independently tested by isolating sealed right-side-out microsomes from sec12-1 strains expressing six different Gap1p constructs containing functional factor Xa protease cleavage sites. The pattern of factor Xa protease cleavage was found to be consistent with the presence of 12 membrane-spanning domains. Gap1p exhibited the same membrane topology in strains lacking Shr3p; therefore, Gap1p fully integrates into the ER membrane independently of this permease-specific packaging chaperone.  相似文献   

12.
The integral endoplasmic reticulum (ER) membrane protein Shr3p is required for proper plasma membrane localization of amino acid permeases (AAPs) in yeast. In the absence of Shr3p AAPs are uniquely retained in the ER with each of their twelve membrane-spanning segments correctly inserted in the membrane. Here, we show that the membrane domain of Shr3p specifically prevents AAPs from aggregating, and thus, plays a critical role in assisting AAPs to fold and correctly attain tertiary structures required for ER exit. Also, we show that the integral ER proteins, Gsf2p, Pho86p, and Chs7p, function similarly to Shr3p. In cells individually lacking one of these components only their cognate substrates, hexose transporters, phosphate transporters, and chitin synthase-III, respectively, aggregate and consequently fail to exit the ER membrane. These findings indicate that polytopic membrane proteins depend on specialized membrane-localized chaperones to prevent inappropriate interactions between membrane-spanning segments as they insert and fold in the lipid bilayer of the ER membrane.  相似文献   

13.
The Sec23p/Sec24p complex functions as a component of the COPII coat in vesicle transport from the endoplasmic reticulum. Here we characterize Saccharomyces cerevisiae SEC24, which encodes a protein of 926 amino acids (YIL109C), and a close homologue, ISS1 (YNL049C), which is 55% identical to SEC24. SEC24 is essential for vesicular transport in vivo because depletion of Sec24p is lethal, causing exaggeration of the endoplasmic reticulum and a block in the maturation of carboxypeptidase Y. Overproduction of Sec24p suppressed the temperature sensitivity of sec23-2, and overproduction of both Sec24p and Sec23p suppressed the temperature sensitivity of sec16-2. SEC24 gene disruption could be complemented by overexpression of ISS1, indicating functional redundancy between the two homologous proteins. Deletion of ISS1 had no significant effect on growth or secretion; however, iss1Delta mutants were found to be synthetically lethal with mutations in the v-SNARE genes SEC22 and BET1. Moreover, overexpression of ISS1 could suppress mutations in SEC22. These genetic interactions suggest that Iss1p may be specialized for the packaging or the function of COPII v-SNAREs. Iss1p tagged with His(6) at its C terminus copurified with Sec23p. Pure Sec23p/Iss1p could replace Sec23p/Sec24p in the packaging of a soluble cargo molecule (alpha-factor) and v-SNAREs (Sec22p and Bet1p) into COPII vesicles. Abundant proteins in the purified vesicles produced with Sec23p/Iss1p were indistinguishable from those in the regular COPII vesicles produced with Sec23p/Sec24p.  相似文献   

14.
Mutant forms of presenilin (PS) 1 and 2 and amyloid precursor protein (APP) lead to familial Alzheimer's disease. Several reports indicate that PS may modulate APP export from the endoplasmic reticulum (ER). To develop a test of this possibility, we reconstituted the capture of APP and PS1 in COPII (coat protein complex II) vesicles formed from ER membranes in permeabilized cultured cells. The recombinant forms of mammalian COPII proteins were active in a reaction that measures coat subunit assembly and coated vesicle budding on chemically defined synthetic liposomes. However, the recombinant COPII proteins were not active in cargo capture and vesicle budding from microsomal membranes. In contrast, rat liver cytosol was active in stimulating the sorting and packaging of APP, PS1, and p58 (an itinerant ER to Golgi marker protein) into transport vesicles from donor ER membranes. Budding was stimulated in dilute cytosol by the addition of recombinant COPII proteins. Fractionation of the cytosol suggested one or more additional proteins other than the COPII subunits may be essential for cargo selection or vesicle formation from the mammalian ER membrane. The recombinant Sec24C specifically recognized the APP C-terminal region for packaging. Titration of Sarla distinguished the packaging requirements of APP and PS1. Furthermore, APP packaging was not affected by deletion of PS1 or PS1 and 2, suggesting APP and PS1 trafficking from the ER are normally uncoupled.  相似文献   

15.
In mammalian cells, extracellular signals can regulate the delivery of particular proteins to the plasma membrane. We have discovered a novel example of regulated protein sorting in the late secretory pathway of Saccharomyces cerevisiae. In yeast cells grown on either ammonia or urea medium, the general amino acid permease (Gap1p) is transported from the Golgi complex to the plasma membrane, whereas, in cells grown on glutamate medium, Gap1p is transported from the Golgi to the vacuole. We have also found that sorting of Gap1p in the Golgi is controlled by SEC13, a gene previously shown to encode a component of the COPII vesicle coat. In sec13 mutants grown on ammonia, Gap1p is transported from the Golgi to the vacuole, instead of to the plasma membrane. Deletion of PEP12, a gene required for vesicular transport from the Golgi to the prevacuolar compartment, counteracts the effect of the sec13 mutation and partially restores Gap1p transport to the plasma membrane. Together, these studies demonstrate that both a nitrogen-sensing mechanism and Sec13p control Gap1p transport from the Golgi to the plasma membrane.  相似文献   

16.
Budding of transport vesicles from the endoplasmic reticulum in yeast requires the formation, at the budding site, of a coat protein complex (COPII) that consists of two heterodimeric subcomplexes (Sec23p/Sec24p and Sec13p/Sec31p) and the Sar1 GTPase. Sec24p is an essential protein and involved in cargo selection. In addition to Sec24p, the yeast Saccharomyces cerevisiae expresses two non-essential Sec24p-related proteins, termed Sfb2p (product of YNL049c) and Sfb3p/Lst1p (product of YHR098c). We here show that Sfb2p and, less efficiently, Sfb3p/Lst1p are able to bind, like Sec24p, the integral membrane cargo protein Sed5p. We also demonstrate that Sfb2p, like Sec24p and Sfb3p/Lst1p, forms a complex with Sec23p in vivo. Whereas the deletion of SFB2 did not affect transport kinetics of various proteins, the maturation of the glycolipid-anchored plasma membrane protein Gas1p was differentially impaired in sfb3 knock-out cells. We generated several conditional-lethal sec24 mutants that, combined with null alleles of SFB2 and SFB3/LST1, led to a complete block of transport between the endoplasmic reticulum and the Golgi (sec24-11/Deltasfb2) or to cell death (sec24-11/Deltasfb3). Of the Sec24p family members, Sfb2p is the least abundant at steady state, but high intracellular concentrations of Sfb2p can rescue sec24 mutants under restrictive conditions. The data presented strongly suggest that the Sec24p-related proteins function as COPII components.  相似文献   

17.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

18.
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.  相似文献   

19.
COPII coat proteins are required for direct capture of cargo and SNARE proteins into transport vesicles from the endoplasmic reticulum (ER). Cargo and SNARE capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p. The assembly and disassembly cycle of the prebudding complex on ER membranes is coupled to the Sar1p GTPase cycle. Using FRET to monitor a single round of Sec23/24p binding and dissociation from SNAREs in reconstituted liposomes, we show that Sec23/24p dissociates from v-SNARE and complexed t-SNARE with kinetics slower than Sar1p-GTP hydrolysis. Once Sec23/24p becomes associated with v-SNARE or complexed t-SNARE, the complex remains assembled during multiple rounds of Sar1p-GTP hydrolysis mediated by the GDP-GTP exchange factor Sec12p. These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles.  相似文献   

20.
Transport of secretory proteins out of the endoplasmic reticulum (ER) is mediated by vesicles generated by the COPII coat complex. In order to understand how cargo molecules are selected by this cytoplasmic coat, we investigated the functional role of the Sec24p homolog, Lst1p. We show that Lst1p can function as a COPII subunit independently of Sec24p on native ER membranes and on synthetic liposomes. However, vesicles generated with Lst1p in the absence of Sec24p are deficient in a distinct subset of cargo molecules, including the SNAREs, Bet1p, Bos1p and Sec22p. Consistent with the absence of any SNAREs, these vesicles are unable to fuse with Golgi membranes. Furthermore, unlike Sec24p, Lst1p fails to bind to Bet1p in vitro, indicating a direct correlation between cargo binding and recruitment into vesicles. Our data suggest that the principle role of Sec24p is to discriminate cargo molecules for incorporation into COPII vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号