首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrically triggered action potentials in the giant alga Chara corallina are associated with a transient rise in the concentration of free Ca(2)+ in the cytoplasm (Ca(2)+(cyt)). The present measurements of Ca(2)+(cyt) during membrane excitation show that stimulating pulses of low magnitude (subthreshold pulse) had no perceivable effect on Ca(2)+(cyt). When the strength of a pulse exceeded a narrow threshold (suprathreshold pulse) it evoked the full extent of the Ca(2)+(cyt) elevation. This suggests an all-or-none mechanism for Ca(2)+ mobilization. A transient calcium rise could also be induced by one subthreshold pulse if it was after another subthreshold pulse of the same kind after a suitable interval, i.e., not closer than a few 100 ms and not longer than a few seconds. This dependency of Ca(2)+ mobilization on single and double pulses can be simulated by a model in which a second messenger is produced in a voltage-dependent manner. This second messenger liberates Ca(2)+ from internal stores in an all-or-none manner once a critical concentration (threshold) of the second messenger is exceeded in the cytoplasm. The positive effect of a single suprathreshold pulse and two optimally spaced subthreshold pulses on Ca(2)+ mobilization can be explained on the basis of relative velocity for second messenger production and decomposition as well as the availability of the precursor for the second messenger production. Assuming that inositol-1,4,5,-trisphosphate (IP(3)) is the second messenger in question, the present data provide the major rate constants for IP(3) metabolism.  相似文献   

2.
NAADP has been shown to act as a second messenger in a wide range of systems from plants to mammalian cells. Although it had always been considered as a canonical second messenger, recent work has shown that it is also active when applied extracellularly. It has also been suggested that NAADP might have a direct action on P2 receptors, based on the action of a pharmacological agent, PPADS, on Ca2+ signals in response to extracellular NAADP. We have therefore investigated whether PPADS can act directly on the intracellular NAADP-induced Ca2+-release system in the well characterised sea urchin egg homogenate system. Indeed, PPADS, and its structural analogue PPNDS were able to compete with [32P]NAADP for the binding site and binding curves revealed that both compounds display affinities in the low micromolar range. The binding of PPADS was reversible in contrast to that of NAADP. In fluorimetric Ca2+-release experiments, PPADS was able to competitively antagonise NAADP-induced Ca2+-release with an IC50 of 20 microM, while it did not affect the other Ca2+-release channels. This is the first report of a reversible, competitive antagonist of the sea urchin NAADP receptor. Furthermore, PPADS might reveal itself as an invaluable tool to investigate NAADP signalling and is a lead compound for the synthesis of potent and specific antagonists.  相似文献   

3.
We have previously demonstrated mobilization of Ca2+ in and efflux of Rb+ (K+) from isolated hamster brown adipocytes as a consequence of norepinephrine stimulation. We have now investigated the adrenoceptor subtype specificity of these responses and found them both to be of the alpha 1-subtype. Further, we have found that the Rb+ (K+) efflux was dependent upon a primary Ca2+ mobilization event in response to the alpha 1-adrenergic stimulation, since the Rb+ efflux could also be demonstrated by the addition of the Ca2+ ionophore A23187 to the cells. The norepinephrine- and A23187-stimulated Rb+ effluxes were both inhibited by the Ca2+-dependent K+-channel blocker apamin. Apamin also significantly attenuated Ca2+ mobilization in cells in response to a submaximal concentration of norepinephrine. We conclude that alpha 1-adrenergic stimulation of brown fat cells leads to a mobilization of intracellular Ca2+ which, in itself or via other mechanisms, leads to an increase in cytosolic Ca2+ concentration which, in turn, activates a Ca2+-dependent K+ channel, leading to a K+ release from these cells. A possible role for this channel to sustain and augment the response to alpha 1-adrenergic stimulation is discussed.  相似文献   

4.
Embryonic cells transiently express an embryonic muscarinic system during morphogenesis. Stimulation of the embryonic muscarinic receptor results in biphasic intracellular Ca2+ mobilization: an initial "peak" due to Ca2+ release from intracellular stores is followed by a sustained "plateau" of enhanced cytoplasmic Ca2+ due to influx of extracellular Ca2+. In the present investigation, we characterized the Ca2+ influx by measuring the cytoplasmic free Ca2+ concentration [Ca2+]i using the Ca2+ indicator fura-2: 1. The increase of [Ca2+]i during the plateau depended linearly on the logarithm of the extracellular calcium concentration whereas the initial peak was almost independent from extracellular calcium. 2. The organic Ca2+ entry blockers verapamil, gallopamil, nifedipine, nitrendipine and the inorganic blockers Mn2+, Mg2+ and La3+ were without effect on both phases of Ca2+ mobilization. Only Ni2+ at concentrations above 1 mM was able to reduce the influx without affecting the intracellular Ca2+ release. 3. Substitution of extracellular Na+ by guanidine+, choline+ or tris+ and membrane depolarisation by increasing the extracellular K+ concentration had no effect on either phase of Ca2+ mobilization. We conclude that a non-voltage dependent, receptor-operated influx mechanism, probably a "second messenger operated Ca2+ channel", is responsible for the Ca2+ influx after stimulation of the embryonic muscarinic receptor.  相似文献   

5.
Changes in intracellular Ca2+ concentration ([Ca2+]i) following the activation of muscarinic receptors with carbachol were studied in cells from the exocrine avian nasal gland that had been maintained in culture for 40-48 h. In these cells, the carbachol-induced sustained increase in [Ca2+]i could be further increased by the subsequent addition of thapsigargin. This increase was due to an additional release of intracellular Ca2+ and a corresponding further enhancement of Ca2+ entry. However, thapsigargin-sensitive and Ins(1,4,5)P3-sensitive stores appeared to be coincident and the initial carbachol stimulus was sufficient to completely empty these stores. It was concluded that the subsequent effect of thapsigargin was due to a partial refilling of the Ins(1,4,5)P3-sensitive stores despite the continued presence of agonist, an effect that was not the result of any decline in levels of cellular Ins(1,4,5)P3 or changes in the generation of Ins(1,3,4,5)P4, which were sustained throughout. Possible explanations for this refilling response include compartmentalization of intracellular Ins(1,4,5)P3, or a desensitization of the Ins(1,4,5)P3 receptor/Ca(2+)-release channel. Alternatively, the data are also compatible with a recently proposed kinetic separation of Ca2+ uptake and release sites. An important implication of this particular interpretation of our findings would be an apparent dependence of Ca2+ entry specifically on the status of the Ca(2+)-uptake component of the agonist-sensitive store, rather than the Ca(2+)-release component.  相似文献   

6.
The role of Ins(1,4,5)P3 in receptor-induced Ca2+ mobilization in pituitary cells was studied at the single-cell level. Experimental strategies were developed which allowed a comparative analysis of the effects of Ins(1,4,5)P3 with those of receptor activation under identical conditions. These include microfluorimetry as well as a novel technique which permits the controlled and rapid application of intracellular messenger molecules to individual cells. This latter approach is based on the tight-seal whole-cell recording (WCR) technique, and utilizes two patch-clamp micropipettes, one for electrical recording and the second for the controlled pressure injection. Ins(1,4,5)P3, when applied with this dual-WCR (DWCR) technique, leads rapidly to a marked rise in cytosolic free Ca2+ [( Ca2+]i) and a concomitant stimulation of Ca2(+)-activated K+ current; Ins(1,4,5)P3 can thus mimic the effects of thyrotropin-releasing hormone (TRH) in the same cells under identical conditions. In cells dialysed intracellularly with heparin, a potent antagonist of Ins(1,4,5)P3 action, the rapid response to extracellular stimulation with TRH was abolished, as were the effects of intracellular application of Ins(1,4,5)P3. Heparin, which abolished Ins(1,4,5)P3 action completely, blocked responses to TRH in some cells only partially, revealing that Ca2+ mobilization response to TRH is in part slower in onset than the response to Ins(1,4,5)P3. It is concluded (1) that Ins(1,4,5)P3 is an essential element for the action of TRH, providing a rapid mechanism for Ca2+ mobilization induced by the releasing hormone and (2) that TRH action in mobilizing intracellular Ca2+ is sustained by a slower mechanism which is independent of Ins(1,4,5)P3.  相似文献   

7.
When an internodal cell of Chara corallina was stimulated with a mechanical pulse of various amplitudes lasting for 0.1 s (mechanical stimulus), the cell generated a receptor potential, which was highly dependent not only on the strength of the stimulus but also on the extracellular Cl- concentration. Extracellular Ca2+ was indispensable for generating receptor potential, since removal of Ca2+ reversibly inhibited generation of the receptor potential. The cytoplasmic Ca2+ level transiently rose upon mechanical stimulation. The stronger the mechanical stimulus, the larger was the increase in the cytoplasmic level of Ca2+. It is proposed that the first step of receptor potential is an activation of mechanosensitive Ca2+ channels at the plasma membrane.  相似文献   

8.
The InsP3R Ca(2+)-release channel has biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). InsP3 activates gating primarily by reducing high [Ca2+]i inhibition. To determine whether relieving Ca2+ inhibition is sufficient for activation, we examined single-channels in low [Ca2+]i in the absence of InsP3 by patch clamping isolated Xenopus oocyte nuclei. For both endogenous Xenopus type 1 and recombinant rat type 3 InsP3R channels, spontaneous InsP3-independent activities with low open probability Po (approximately 0.03) were observed in [Ca2+]i < 5 nM, whereas none were observed in 25 nM Ca2+. These results establish the half-maximal inhibitory [Ca2+]i in the absence of InsP3 and demonstrate that the channel can be active when all of its ligand-binding sites are unoccupied. In the simplest allosteric model that fits all observations in nuclear patch-clamp studies, the tetrameric channel can adopt six conformations, the equilibria among which are controlled by two inhibitory, one activating Ca(2+)-binding, and one InsP3-binding sites in a manner similar to the Monod-Wyman-Changeux model. InsP3 binding activates gating by affecting the relative affinity for Ca2+ of one of the inhibitory sites in different channel conformations, transforming it into an activating site. Ca2+ inhibition of InsP3-liganded channels is mediated by an InsP3-independent second inhibitory site.  相似文献   

9.
The mating pheromone, alpha-factor, of the yeast Saccharomyces cerevisiae binds to the heterotrimeric G protein-coupled cell surface receptor of MATa cells and induces cellular responses necessary for mating. In higher eukaryotic cells, many hormones and growth factors rapidly mobilize a second messenger, Ca2+, by means of receptor-G protein signaling. Although striking similarities between the mechanisms of the receptor-G protein signaling in yeast and higher eukaryotes have long been known, it is still uncertain whether the pheromone rapidly mobilizes Ca2+ necessary for early events of the pheromone response. Here we reexamine this problem using sensitive methods for detecting Ca2+ fluxes and mobilization, and find no evidence that there is rapid Ca2+ influx leading to a rapid increase in the cytosolic free Ca2+ concentration. In addition, the yeast PLC1 deletion mutant lacking phosphoinositide-specific phospholipase C, a key enzyme for generating Ca2+ signals in higher eukaryotic cells, responds normally to the pheromone. These findings suggest that the receptor-G protein signaling does not utilize Ca2+ as a second messenger in the early stage of the pheromone response pathway. Since the receptor-G protein signaling does stimulate Ca2+ influx after early events have finished and this stimulation is essential for late events in the pheromone response pathway [Iida et al., (1990) J. Biol. Chem., 265: 13391-13399] Ca2+ may be used only once in the signal transduction pathway in unicellular eukaryotes such as yeast.  相似文献   

10.
The patch-clamp technique is used to investigate divalent ion block of the large-conductance K+ channel from Chara australis. Block by Ba2+, Ca2+, Mg2+, and Pt(NH3)4(2+) from the vacuolar and cytoplasmic sides is used to probe the structure of, and ion interactions within, the pore. Five divalent ion binding sites are detected. Vacuolar Ca2+ reduces channel conductance by binding to a site located 7% along the membrane potential difference (site 1, delta = 0.07; from the vacuolar side); it also causes channel closures with mean a duration of approximately 0.1-1 ms by binding at a deeper site (site 2, delta = 0.3). Ca2+ can exit from site 2 into both the vacuolar and cytoplasmic solutions. Cytoplasmic Ca2+ reduces conductance by binding at two sites (site 3, delta = -0.21; site 4, delta = -0.6; from the cytoplasmic side) and causes closures with a mean duration of 10-100 ms by binding to site 5 (delta = -0.7). The deep sites exhibit stronger ion specificity than the superficial sites. Cytoplasmic Ca2+ binds sequentially to sites 3-5 and Ca2+ at site 5 can be locked into the pore by a second Ca2+ at site 3 or 4. Ca2+ block is alleviated by increasing [K+] on the same side of the channel. Further, Ca2+ occupancy of the deep sites (2, 4, and 5) is reduced by K+, Rb+, NH4+, and Na+ on the opposite side of the pore. Their relative efficacy correlates with their relative permeability in the channel. While some Ca2+ and K+ sites compete for ions, Ca2+ and K+ can simultaneously occupy the channel. Ca2+ binding at site 1 only partially blocks channel conduction. The results suggest the presence of four K+ binding sites on the channel protein. One cytoplasmic facing site has an equilibrium affinity of 10 mM (site 6, delta = -0.3) and one vacuolar site (site 7, delta less than 0.2) has low affinity (greater than 500 mM). Divalent ion block of the Chara channel shows many similarities to that of the maxi-K channel from rat skeletal muscle.  相似文献   

11.
Stimulation of a Ca(2+)-induced Ca(2+)-release channel from skeletal muscle sarcoplasmic reticulum by various adenosine(5')oligophospho(5')adenosines (ApnA, n = 2-6) by a rapid quenching technique using radioactive calcium was studied. Ap4A, Ap5A and Ap6A, as well as adenosine 5'-[beta, gamma-methylene]triphosphate (AdoPP [CH2]P), a non-hydrolyzable ATP analogue, stimulated the Ca(2+)-release channel, whereas Ap2A and Ap3A had no effect. At a concentration of 0.5 mM, the order of stimulation was AdoPP[CH2]P less than Ap4A less than Ap5A much less than Ap6A. As well as having the highest affinity (0.44 mM for half-maximal stimulation), Ap6A showed an extraordinarily high Hill coefficient of 3.3 (1.9 for AdoPP[CH2]P, 2.1 for Ap5A). The stimulating effect of Ap6A was reversible, yet its dissociation proceeded very slowly. Stimulation of Ca2+ release by Ap6A was counteracted by Mg2+ and ruthenium red. A 2',3'-dialdehyde derivative of Ap6A, which is a chemical probe for amino groups, stimulated irreversibly the Ca(2+)-release channel and modified some high-molecular-mass sarcoplasmic reticulum proteins, possibly including the channel protein. Our data suggest that Ap6A stimulates the Ca2+ channel by binding to the activation site of the channel subunit and simultaneously preventing the spontaneous decay of the Ca2+ channel by keeping together two of the four channel subunits by bridging them with its two adenosine groups.  相似文献   

12.
In permeabilized hepatocytes, inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate and inositol 4,5-bisphosphate induced rapid release of Ca2+ from an ATP-dependent, non-mitochondrial vesicular pool, probably endoplasmic reticulum. The order of potency was inositol 1,4,5-trisphosphate greater than inositol 2,4,5-trisphosphate greater than inositol 4,5-bisphosphate. The Ca2+-releasing action of inositol 1,4,5-trisphosphate is not inhibited by high [Ca2+], nor is it dependent on [ATP] in the range of 50 microM-1.5 mM. These results suggest a role for inositol 1,4,5-trisphosphate as a second messenger in hormone-induced Ca2+ mobilisation, and that a specific receptor is involved in the Ca2+-release mechanism.  相似文献   

13.
M Usuyama  C Ushida  R Shingai 《PloS one》2012,7(8):e42907
We developed a mathematical model of a hypothetical neuronal signal transduction pathway to better understand olfactory perception in Caenorhabditis elegans. This worm has only three pairs of olfactory receptor neurons. Intracellular Ca(2+) decreases in one pair of olfactory neurons in C. elegans, the AWC neurons, following application of an attractive odor and there is a transient increase in intracellular Ca(2+) following removal of odor. The magnitude of this increase is positively correlated with the duration of odor stimulation. Additionally, this Ca(2+) transient is induced by a cGMP second messenger system. We identified likely candidates for the signal transduction molecules functioning in this system based on available gene expression and physiological data from AWCs. Our model incorporated a G-protein-coupled odor receptor, a G-protein, a guanylate cyclase as the G-protein effector, and a single phosphodiesterase. Additionally, a cyclic-nucleotide-gated ion channel and a voltage-gated ion channel that mediated calcium influx were incorporated into the model. We posited that, upon odor stimulation, guanylate cyclase was suppressed by the G-protein and that, upon cessation of the stimulus, the G-protein-induced suppression ceased and cGMP synthesis was restored. A key element of our model was a Ca(2+)-dependent negative feedback loop that ensured that the calcium increases were transient. Two guanylate cyclase-activating proteins acted on the effector guanylate cyclase to negatively regulate cGMP signaling and the resulting calcium influx. Our model was able to closely replicate in silico three important features of the calcium dynamics of AWCs. Specifically, in our simulations, [Ca(2+)] increased rapidly and reached its peak within 10 s after the odor stimulus was removed, peak [Ca(2+)] increased with longer odor exposure, and [Ca(2+)] decreased during a second stimulus that closely followed an initial stimulus. However, application of random background signal ('noise') showed that certain components of the pathway were particularly sensitive to this noise.  相似文献   

14.
A study of the effects of dihydropyridine Ca2+ channel modulators on the release of catecholamines from perfused rat adrenal glands, evoked by electrical stimulation of their splanchnic nerves, is presented. Electrically mediated secretory responses were compared to chemically mediated responses (exogenous acetylcholine, nicotine, or high K+). Intensities of stimuli were selected to produce quantitatively similar secretory responses (between 100 and 200 ng per stimulus). The main finding of the study is that responses to transmural stimulation (300 pulses at 1 or 10 Hz) and to acetylcholine were inhibited only partially (about 50%) by isradipine, an L-type Ca2+ channel blocker. In contrast, responses to high K+ (17.5 mM for 2 min) were highly sensitive to isradipine (IC50 = 8.2 nM). Responses to nicotine were also fully inhibited by this drug. Bay K 8644 (an L-type Ca2+ channel activator) potentiated mildly the secretory responses to electrical stimulation at 10 Hz and to acetylcholine, but increased threefold the responses to K+ and nicotine. It is, therefore, likely that responses mediated by high K+ or nicotinic receptors are triggered by external Ca2+ gaining access to the internal secretory machinery through L-type, dihydropyridine-sensitive voltage-dependent Ca2+ channels. However, in addition to nicotinic receptors, the physiological stimulation of adrenal medulla chromaffin cells through splanchnic nerves has other components, i.e., muscarinic receptor stimulation or the release of cotransmitters such as vasoactive intestinal polypeptide. The poorer sensitivity to dihydropyridines of secretory responses triggered by electrical stimulation of splanchnic nerve terminals or exogenous acetylcholine speaks in favor of alternative Ca2+ pathways, probably some dihydropyridine-resistant Ca2+ channels, in modulating the physiological adrenal catecholamine secretory process.  相似文献   

15.
The protease-activated receptor-2 (PAR-2), a G protein-coupled receptor activated by trypsin, contributes to the pathogenesis of inflammatory disease including asthma. Here, we examined the mechanisms by which stimulation of PAR-2 induces an increase in intracellular Ca2+ concentration ([Ca2+]i) in guinea pig tracheal epithelial cells. Trypsin (0.01-3 units/ml) dose-dependently induced a transient increase in [Ca2+]i, the increase being blocked by soybean trypsin inhibitor (SBTI 1 microM). An increase in [Ca2+]i was also induced by an agonist peptide for PAR-2 (SLIGRL-NH2, 0.001-10 microM) but not by thrombin (3 units/ml, an activator for PAR-1, PAR-3 or PAR-4). Repeated or cross stimulation of trypsin or SLIGRL-NH2 caused marked desensitization of the [Ca2+]i response. These responses of [Ca2+]i to trypsin and SLIGRL-NH2 were attenuated by a phospholipase C inhibitor, U-73122, and a Ca2+-ATPase inhibitor, thapsigargin (100 nM), while removal of Ca2+ and a L-type Ca2+-channel blocker, verapamil, were without significant effects. Further, trypsin was without effect on the rate of fura 2 quenching by Mn2+ entry as an indicator of Ca2+ influx. Thus, stimulation of PAR-2 appears to increase [Ca2+]i through the mobilization of Ca2+ from intracellular stores probably via phospholipase Cbeta-linked generation of a second messenger.  相似文献   

16.
This paper investigates the impact of increased salinity on touch-induced receptor and action potentials of Chara internodal cells. We resolved underlying changes in ion transport by current/voltage analysis. In a saline medium with a low Ca(2+) ion concentration [(Ca(2+))(ext)], the cell background conductance significantly increased and proton pump currents declined to negligible levels, depolarizing the membrane potential difference (PD) to the excitation threshold [action potential (AP)(threshold)]. The onset of spontaneous repetitive action potentials further depolarized the PD, activating K(+) outward rectifying (KOR) channels. K(+) efflux was then sustained and irrevocable, and cells were desensitized to touch. However, when [Ca(2+)](ext) was high, the background conductance increased to a lesser extent and proton pump currents were stimulated, establishing a PD narrowly negative to AP(threshold). Cells did not spontaneously fire, but became hypersensitive to touch. Even slight touch stimulus induced an action potential and further repetitive firing. The duration of each excitation was extended when [Ca(2+)](ext) was low. Cell viability was prolonged in the absence of touch stimulus. Chara cells eventually depolarize and die in the saline media, but touch-stimulated and spontaneous excitation accelerates the process in a Ca(2+)-dependent manner. Our results have broad implications for understanding the interactions between mechano-perception and salinity stress in plants.  相似文献   

17.
The explosive increase in Ca2+ that occurs in the cytosol at fertilization is brought about by the activation of Ca2+-release channels in the intracellular stores. Inositol 1,4,5-trisphosphate (InsP3) is traditionally considered to be the messenger that initiates the increase and spreading of the activating Ca2+ wave. In line with this hypothesis, recent evidence suggests that the penetrating sperm delivers into mammalian eggs a novel isoform of phospholipase C (PLC), which promotes the formation of InsP3. By contrast, data from echinoderms studies indicate that the newly discovered second messenger nicotinic adenine dinucleotide phosphate (NAADP) promotes an initial, localized increase in Ca2+, which is then followed by the InsP3-mediated globalization of the Ca2+ wave. The mechanism by which the interacting sperm triggers the production of NAADP and subsequently that of InsP3 remains obscure.  相似文献   

18.
Sarcoplasmic reticulum (SR) vesicles, prepared from rabbit skeletal muscle, were characterized by functional and binding assays and incorporated into planar lipid bilayers. Single-channel activity was recorded in an asymmetric calcium buffer system and studied under voltage clamp conditions. Under these experimental conditions, a large conductance (100 pS in 50 mM Ca2+ trans) divalent cation selective channel displaying high ruthenium red and low Ca2+ sensitivity was identified. This pathway has been previously described as the Ca(2+)-release channel of the SR of skeletal muscle. We now report that in the presence of a Mg-ATP complex, the Ca2+ sensitivity of the open probability of this channel is increased. Furthermore, we show that micromolar cis Sr2+ concentrations also activated the Ca(2+)-release channel. The open probability of the Sr(2+)-activated channel was increased in the presence of a 2 mM Mg-ATP complex and adenine nucleotides on the cytoplasmic face of the Ca(2+)-release channel. These results were confirmed by isotopic flux measurements using passively 45Ca(2+)-loaded vesicles. In the latter case, the presence of extravesicular AMP-PCP (the nonhydrolysable ATP analog) enhanced the percentage of 45Ca2+ release induced either by Ca2+ or Sr2+ activation. In conclusion our findings emphasize the fact that the divalent cation activation of the Ca(2+)-release channel may be induced by Ca2+ and Sr2+, but not by Ba2+, in the presence of adenine nucleotides. Furthermore, they support the view that in situ Ca2+ and Mg-ATP complexes are involved in modulating the gating mechanism of this specific pathway.  相似文献   

19.
Stimulation of human T-lymphocytes via either the surface T3-Ti antigen-major histocompatibility complex receptor complex or the T11 molecule results in clonal proliferation through a calcium-dependent mechanism. To investigate this signal transduction, plasma membrane calcium-permeable channels were characterized in T-lymphocytes by means of whole cell or single channel patch-clamp recordings. Stimulation of T-lymphocytes via either structure results in opening of an identical set of voltage-insensitive plasma membrane Ca2+-permeable channels through the action of a diffusible second messenger. Previous work with excised inside-out patches suggests that inositol 1,4,5-trisphosphate is the activating second messenger of the voltage-insensitive T-cell Ca2+-permeable channel. Since there is a significant increase in phosphoinositide turnover after stimulation via either the T3-Ti or T11 pathway, it is suggested that triggering of either structure opens a common set of channels through this mechanism. Furthermore, currents flowing through Ca2+-permeable channels are apparently autoregulated, as inward conductance is abolished by elevation of Ca2+ concentration in the bathing solution. In particular, the steady-state rise in interleukin-2 (T-cell growth factor) mRNA is dependent on the rise of [Ca2+]i resulting from ion movement across this channel.  相似文献   

20.
Based on the observation that the calcium-activated K+ channel in the pancreatic islet cells can also be activated by the membrane potential, we have formulated a mathematical model for the electrical activity in the pancreatic beta-cell. Our model contains two types of ionic channels, which are active above the subthreshold glucose concentration in the limit-cycle region: a Ca2+-activated, voltage-gated K+ channel and voltage-gated Ca2+ channel. Numerical simulation of the model generates bursts of electrical activity in response to a variation of kCa, the rate constant for sequestration of intracellular calcium ions. The period and duration of the bursts in response to kCa are in good agreement with experiment. The model predicts that a combined spike and burst pattern can be created using only single species of inward and outward currents, the inactivation kinetics (i.e., h) in the inward current is not a necessary condition for the generation of the pattern, and a given pattern or intensity of electrical activity may produce different levels of intracellular Ca2+ depending on the set of certain electrical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号