首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The DNA content in isolated nuclei of Amoeba proteus was determined for each of the three groups of synchronized amoebae over different intervals after division. Several nuclei of each amoeba group were fixed 1 h after division, before the amoebae were fed. About h after division, some amoebae in each group were given food (Tetrahymena pyriformis), while the rest were left starving. Samples of the nuclei of fed and starved amoebae were fixed 24 h and (in different groups) 42–55 h after division. In each group from 22 to 48% of the fed amoebae had divided prior to the last nuclei fixation. Starved amoebae did not undergo division. In all three amoeba groups the nuclear DNA content of fed cells by the end of interphase had increased to 280–300% the value for 1 h amoebae. The nuclear DNA content of starved amoebae of all three groups was also increased, and in two groups it exceeded the initial level more than two-fold. However, in all three groups, it was lower than that of fed amoebae. In all the groups the nuclear DNA content in fed amoebae grew after 24 h, i.e. during the second half of interphase, the increase accounting for from 11 to 48% of the total increase. The hypothesis is put forward that the increase in the nuclear DNA content during the cell cycle of Amoeba proteus is the result of two processes: (1) one-time replication of the DNA of the whole genome; and (2) repeated replication of some part of the DNA. In amoebae the relation of the pattern of nuclear DNA synthesis to the diet is considered.  相似文献   

2.
The macronucleus of Tetrahymena contains a large number of DNA molecules of subchromosomal size. They belong to about 270 species each one occurring at an average number of 45 copies Macronuclei divide unequally and nothing is known of segregation control. This and the elimination and degradation of DNA during macronuclear amitosis make the clonal stability of macronuclei a problem of qualitative and quantitative control on a subchromosomal level. We studied the contribution of DNA elimination to the quantitative composition of the macronucleus cytophotometrically in single cells of different strains. This was done under standard conditions and under conditions known to influence the amount of macronuclear DNA. The following results were found: Elimination of DNA occurs at almost every division. The size of the elimination body is highly variable but still positively correlated with the macronuclear DNA content. In T. thermophila the amount of eliminated DNA is 2.5% of the G2 content and is not dependent on the growth state. It varies with species, amounting to as much as 8% in T pigmentosa. During conditions which increase the macronuclear DNA content, very little DNA is eliminate. On the other hand, large amounts are eliminated under other conditions causing the macronuclear DNA content to decrease. DNA to be eliminated at division is synthesized at the same time as bulk DNA. We developed a computer program which helps us study the effects of DNA elimination and unequal divisions upon the copy numbers of subchromosomal DNA classes. The result indicates that in a given cell line at least one of the DNA molecules becoms extinct after 60 generations which we expect would cause the cell's extinction and restrict a clone's life to 60 generations. As this does not happen in nature, there must be some control of the copy numbers preventing their extinction during vegetative multiplication. Whether elimination increases or decreases the imbalance of genes remains to be investigated. © 1992 Wiley-Liss, Inc.  相似文献   

3.
Addition of ethidium bromide to ameboid cultures of the slime mold,Dictyostelium discoideum, caused a cessation of cell division after 1 or 2 generations. The replication of mitochondrial DNA was immediately blocked as indicated by the 50% decrease in the DNA content of purified mitochondria from ethidium-bromide-treated cultures. The activity of the respiratory chain was also inhibited, resulting in a 75% decrease in cyanide-sensitive whole cell respiration. Spectral analysis at low temperature indicated that the amount of cytochromec 1 was decreased 80% and that of cytochromec increased 100% in mitochondria from treated cells. Two cytochromesb absorbing at 556 and 561 nm were observed in mitochondria from both control and ethidium-bromide-treated cultures. The content of cytochromeb 561 appeared to decline more than didb 556, but it is hard to quantitate the decrease. The effects of ethidium bromide were fully reversible. When the drug was removed, the cells resumed a normal growth rate without any discernible lag. The activity of oligomycin-sensitive ATPase, cytochrome oxidase, and succinate-cytochrome-c reductase as well as the cytochrome content began to increase after 1 day returning to control levels within 5 days. Electron micrographs of whole cells treated with ethidium bromide revealed that mitochondrial profiles were elongated and had greatly reduced cristae. Numerous membrane whorls were apparent, as was a profound loss of rough endoplasmic reticulum. Three days after removal of ethidium bromide, mitochondria were again ovoid in shape and contained well-developed cristae. In all of the cells during recovery, there was a single large vacuole that appeared to enclose a large portion of the cell volume, forming a new cellular compartment that may simplify the breakdown of previously damaged organelles.This work is in partial fulfillment of the requirements for the Doctor of Philosophy degree at the City University of New York.  相似文献   

4.
Chromosomes segregration and development in Caulobacter crescentus   总被引:4,自引:0,他引:4  
The pattern of genome segregation to progeny stalked and swarmer cells of Caulobacter crescentus has been determined in a study of the localization of information in developing cells. The genome of stalked cells was labeled with [3H]deoxy-guanosine to mark one of the two DNA strands preferentially. The segregation of this labeled strand after one or more rounds of replication and division in non-radioactive medium was determined by (a) the rate of accumulation of radio-activity during three successive generations of swarmer cells released from labeled stalked cells which were attached to glass plates, and (b) electron microscopy autoradiography of stalked and swarmer cell progeny of labeled stalked cells. The results indicate that most of the DNA of a given age in C. crescentus segre-gates randomly to the two cell types at division, and that the genome probably segregates as a single chromosomal unit.  相似文献   

5.
Histone H10 a differentiation-specific member of the histone H1 family, accumulates in cells during the terminal phase of cell differentiation, in tissues composed of arrested cells or cells exhibiting little proliferation. Moreover, the induction of cell proliferation in vivo, i.e., after partial hepatectomy, is accompanied by a decrease in H10 content. These observations suggest that H10 may be involved in the arrest of cell proliferation in vivo. In order to investigate this possibility, we took advantage of the fact that after partial hepatectomy the initiation of cell division is not synchronous. The strategy was to know, at the level of a single cell, whether H10 decreases prior to the initiation of the S phase or whether a cell can initiate DNA replication having a significant amount of H10 in the nucleus. We defined new protocols to analyze H10 content and cell proliferation at the level of a single cell, both in situ and by flow cytometry. The simultaneous determination of the relative amount of H10 and the position of cells in the cell cycle showed that no significant difference in H10 content was detected in cells actively replicating their DNA compared to nondividing cells. These observations have been confirmed by the successive immunodetections of H10 and BrdU in situ on the same cells. Therefore, we show here that in vivo, cells can initiate DNA replication with significant amounts of H10 and that the decrease of H10 is not a prerequisite of cell division. We propose that the accumulation of H10 is not related to the arrest of cell proliferation, but is controlled in such a manner that the protein accumulates in slowly dividing cells and decreases in rapidly growing cells.  相似文献   

6.
The controls acting over the timing of DNA replication (S) during the cell cycle have been investigated in the fission yeast Schizosaccharomyces pombe. The cell size at which DNA replication takes place has been determined in a number of experimental situations such as growth of nitrogen-starved cells, spore germination and synchronous culture of wee mutant and wild-type strains. It is shown that in wee mutant strains and in wild type grown under conditions in which the cells are small, DNA replication takes place in cells of the same size. This suggests that there is a minimum cell size beneath which the cell cannot initiate DNA replication and it is this control which determines the timing of S during the cell cycle of the wee mutant. Fast growing wild-type cells are too large for this size control to be expressed. In these cells the timing of S may be controlled by the completion of the previous nuclear division coupled with a requirement for a minimum period in G1. Thus in S. pombe there are two different controls over the timing of S, either of which can be operative depending upon the size of the cell at cell division. It is suggested that these two controls may form a useful conceptual framework for considering the timing control over S in mammalian cells.  相似文献   

7.
Hydroxyurea (10 mM) arrests the exponential growth of Tetrahymena by blocking DNA replication during S-phase. After removal of the hydroxyurea (HU), they have a long recovery period during which they are active in DNA synthesis. 3H-TdR uptake showed that on completion of the recovery period, the cells divide (recovery division) and enter a cell cycle which lacks G1. The frequency, size and DNA content of the extranuclear chromatin bodies (ECB) formed at this division are all markedly increased (2–4) over the corresponding values obtained from exponential growth phase controls. Microspectrophotometric analysis of macronuclear DNA content (N) coupled with the cytoplasmic dry mass (C) values suggest that specific N to C ratios (N/C) are required for the initiation of DNA replication and fission: during a normal (exponential growth) cell cycle, both N and C double, but asynchronously, so that the N/C of both post-fission-daughter cells and pre-fission cells is identical (standardized to N/C = 1) but late G1 cells have a low N/C. During a 10 hr exposure to HU, the N remains essentially the same whereas the C increases. When the HU is removed, the N increases by 4× and the C continues to increase until just prior to recovery division when it also reaches a value 4× that of the original daughter cells. Thus, the N/C = 1 is re-established. The enlarged ECB formed during recovery division may function to lower the N/C in the daughter cells, which in turn may in some way stimulate immediate DNA replication, thus eliminating G1. The elimination of G1 (and shortening in a few subsequent cell cycles) allows less time for cytoplasmic growth and results in the return of the cells to the generation time and the N and C values observed prior to the HU treatment.  相似文献   

8.
A terminal stage in the duplication of many bacterial plasmids involves the transient formation of catenated molecules containing two interlocked monomeric plasmid units. This property of plasmid replication was exploited to examine the relationship between F replication and the division cycle of Escherichia coli B/r cells growing in undisturbed, exponential-phase cultures. Various cultures of F′lac- or FKmr-containing cells were briefly exposed to [3H]thymidine, and then the transfer of radioactivity into, and out of, a catenated dimer consisting of two closed circular monomers was measured during a chase period. The fraction of plasmid molecules present in this dimer form was determined by separating cellular DNA in alkaline sucrose gradients. In addition, plasmid replication was studied in synchronously growing cultures by measuring both [3H]thymidine incorporation into covalently closed circular DNA and β-galactosidase inducibility. The results suggest that replication of F plasmids can take place throughout the cell division cycle, with the probability of replication increasing toward the end of the cycle. The presence of DNA homologous to the chromosome on the F′lac did not alter the replication pattern of the plasmid during the division cycle.  相似文献   

9.
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements.  相似文献   

10.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1995,188(3-4):245-251
Summary DNA containing structures (cellular, chloroplast and mitochondrial nuclei) were stained with the fluorochrome DAPI. Fluorescence intensity, as a measure of DNA content, was estimated during the mitotic cycle in synchronized populations of the chlorococcal alga,Scenedesmus quadricauda. In cells yielding eight daughter cells, three consecutive steps in chloroplast DNA increase occurred over one mitotic cycle. The first step was performed shortly after releasing the daughter cells, the second and third steps occurred consecutively during the first half of the mitotic cycle. Commitment to chloroplast DNA replication was chronologically separated from commitment to division of chloroplast nuclei, revealing that these two chloroplast reproductive steps were under different control mechanisms. The replication of chloroplast DNA occurred at a different time to that of cell-nuclear DNA. The coordination of chloroplast reproductive processes and those in the nucleocytoplasmic compartment were governed by the mutual trophic and metabolic dependency of these compartments rather than by any direct or feedback control controlled by either of them.Abbreviations DAPI 46-diamidino-2-phenylindole - ptDNA DNA in chloroplast nuclei - nucDNA DNA in cell nuclei  相似文献   

11.
Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi‐chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division‐replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.  相似文献   

12.
Paramecium cells were selected which received the entire parental macronucleus at fission and thus started the cell cycle with twice the normal post-fission DNA content. During each of the subsequent two cell cycles the cells synthesized approximately as much DNA as did control cells. The amount of excess macronuclear DNA was consequently halved during each cell cycle. The minimum pre-fission DNA content was just larger than the mean post-replication DNA amount, confirming that a similar amount of DNA, approximately equal to the mean post-fission DNA content of the non-selected population, was synthesized in macronuclei, regardless of the post-fission DNA content. These observations confirm a model for DNA content regulation previously devised for Paramecium and are inconsistent with DNA content regulation schemes proposed for other ciliates. The increased DNA content has no effect either on the subsequent total protein content of pre-fission cells, or on the rate of cell growth. This suggests that the rate of cell growth is limited by the size of the cell when the macronuclear gene-dosage is equal to or greater than that in normal cells. The results also suggest that the amount of DNA synthesized within an interfission period is also limited by the size of the cell and is proportional to the cell mass. Paramecium does not require a fixed nucleocy oplasmic ratio as a pre-condition either for cell division, or, by inference, for initiation of DNA synthesis.  相似文献   

13.
During asexual fission in the ciliate Euplotes eurystomus, the macronucleus divides amitotically. The macronucleus was found to divide unequally, yielding sister pairs having a mean difference in DNA content of 11.6%. DNA content was determined by the Feulgen reaction using a fluorescent Schiffs reagent, and measuring fluorescence by cytophotometry. Variability in macronuclear DNA content was also examined in randomly-paired non-sister cells, and found to be greater than in sister cells. This greater variability could be due to accumulation of differences over a number of divisions, or to interclonal differences in equality of division. Two categories of non-sister cells were examined: recently divided, and parents constructed by averaging the DNA contents of progeny. Both showed similar variability in quantity of macronuclear DNA. The fact that cells surviving to divide showed no less variability in amount of DNA than cells immediately after division suggests that extremes in amounts of DNA resulting from unequal division are not selected against.  相似文献   

14.
Relative changes in plastid DNA content in each stage of plastid division were investigated in order to better understand the division cycle of plastids in spore mother cells in the horwortAnthoceros punctatus. Samples of cells stained with DAPI were observed with epifluorescence microscopy and CHIAS. In spore mother cells of this species, plastids duplicated their own DNA prior to the plastidkinesis of the first plastid division, but did not replicate plastid DNA prior to the plastidkinesis of the second plastid division. Therefore, the DNA content of those plastids in which division had been completed was reduced to half its initial value. This indicates that the DNA replication pattern of plastids in spore mother cells corresponds to that of cell nuclei during premeiosis and meiosis inA. punctatus.  相似文献   

15.
Coordination between cellular metabolism and DNA replication determines when cells initiate division. It has been assumed that metabolism only plays a permissive role in cell division. While blocking metabolism arrests cell division, it is not known whether an up-regulation of metabolic reactions accelerates cell cycle transitions. Here, we show that increasing the amount of mitochondrial DNA accelerates overall cell proliferation and promotes nuclear DNA replication, in a nutrient-dependent manner. The Sir2p NAD+-dependent de-acetylase antagonizes this mitochondrial role. We found that cells with increased mitochondrial DNA have reduced Sir2p levels bound at origins of DNA replication in the nucleus, accompanied with increased levels of K9, K14-acetylated histone H3 at those origins. Our results demonstrate an active role of mitochondrial processes in the control of cell division. They also suggest that cellular metabolism may impact on chromatin modifications to regulate the activity of origins of DNA replication.  相似文献   

16.
Inhibitor of growth 2 (ING2) is a candidate tumour suppressor gene the expression of which is frequently lost in tumours. Here, we identified a new function for ING2 in the control of DNA replication and in the maintenance of genome stability. Global replication rate was markedly reduced during normal S‐phase in small interfering RNA (siRNA) ING2 cells, as seen in a DNA fibre spreading experiment. Accordingly, we found that ING2 interacts with proliferating cell nuclear antigen and regulates its amount to the chromatin fraction, allowing normal replication progression and normal cell proliferation. Deregulation of DNA replication has been previously associated with genome instability. Hence, a high proportion of siRNA ING2 cells presented endoreduplication of their genome as well as an increased frequency of sister chromatid exchange. Thus, we propose for the first time that ING2 might function as a tumour suppressor gene by directly maintaining DNA integrity.  相似文献   

17.
Trypanosoma cruziis an ancient, parasitic eukaryote which does not undergo chromatin condensation during cell division. This behavior may be explained if one considers the strong amino acid sequence divergence ofTrypanosomahistones compared to higher eukaryotes. In the latter organisms histone synthesis is coupled to DNA replication. Considering the nonconserved amino acid sequence ofT. cruzihistones, as well as the absence of chromatin condensation in this organism, we have studied histone synthesis in relation to DNA replication in this parasite. We have found that core histones and a fraction of histone H1 are synthesized concomitantly to DNA replication. However, another fraction of histone H1 is constitutively synthesized.  相似文献   

18.
The evolution of the total amount of DNA in epicotyls and of the amount of DNA per cell nucleus in epicotyl cortex cells during germination was followed in two closely related pea varieties, Pisum sativum cv. Finale and Pisum sativum cv. Rondo. Under etiolating conditions, growth of the cv. Rondo occurs only by cell elongation which is preceded by endomitotic DNA synthesis, while in the cv. Finale growth is the result of cell elongation accompanied by endomitotic DNA synthesis and cell division. The maximum C-level attained in both cultivars under etiolating conditions is 8 C (C=haploid amount of DNA in a gamete cell). Both the maximum C-level reached and the percentage of cells reaching this C-level seem to be under strict genetic control. In both cultivars, light inhibits the endomitotic DNA replication.Neither gibberellic acid (GA3), nor AMO 1618 alter the maximum C-level or the percentage distribution of the C-classes. Both growth regulators are effective, although in an opposite way, only in tissues where cell division occurs or where endomitotic DNA synthesis is blocked, as in light-grown pea epicotyls.  相似文献   

19.
The temporal schedule of DNA replication in heat-synchronized Tetrahymena was studied by autoradiographic and cytofluorometric methods. It was shown that some cells, which were synchronized by selection of individual dividing cells or by temporary thymidine starvation, incorporated [3H]thymidine into macronuclei in a periodic fashion during the heat-shock treatment. It was concluded that supernumerary S periods occurred while cell division was blocked by high temperature. The proportion of cells which initiated supernumerary S periods was found to be dependent on the duration of the heat-shock treatment and on the cell cycle stage when the first heat shock was applied. Cytofluorometric measurements of Feulgen-stained macronuclei during the heat-shock treatment indicated that the DNA complement of these cells was substantially increased and probably duplicated during the course of each S period. Estimates of DNA content also suggested that the rate of DNA synthesis progressively declined during long heat-shock treatments. These results indicate that the mechanism which brings about heat-induced division synchrony is not an interruption of the process of DNA replication. Further experiments were concerned with the regulation of DNA synthesis during the first synchronized division cycle. It was shown that participation in DNA synthesis at this time increased as more cells were able to conclude the terminal S period during the preceding heat-shock treatment. It is suggested that a discrete period of time is necessary after the completion of DNA synthesis before another round of DNA synthesis can be initiated.  相似文献   

20.
Bacillus subtilis strain Marburg was grown exponentially with a doubling time of 65 min. To follow the time course of various cell cycle events, cells were collected by agar filtration and were then classified according to length. The DNA replication cycle was determined by a quantitative analysis of radioautograms of tritiated thymidine pulse labeled cells. The DNA replication period was found to be 45 min. This period is preceded and followed by periods without DNA synthesis of about 10 min.The morphology and segregation of nucleoplasmic bodies was studied in thin sections. B. subtilis contains two sets of genomes. DNA replication and DNA segregation seem to go hand in hand and DNA segregation is completed shortly after termination of DNA replication.Cell division and cell separation were investigated in whole mount preparations (agar filtration) and in thin sections. Cell division starts about 20 min after cell birth; cell separation starts at about 45 min and before completion of the septum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号