首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial strategies of innate immune evasion and essential metabolic functions are critical for commensal-host homeostasis. Previously, we showed that Sap translocator function is necessary for nontypeable Haemophilus influenzae (NTHI) behaviors that mediate diseases of the human airway. Antimicrobial peptide (AP) lethality is limited by binding mediated by the Sap complex. SapA shares homology with the dipeptide-binding protein (DppA) and the heme-binding lipoprotein (HbpA), both of which have previously been shown to bind the iron-containing compound heme, whose acquisition is essential for Haemophilus survival. Computational modeling revealed conserved SapA residues, similarly modeled to mediate heme binding in HbpA. Here, we directly demonstrate that SapA bound heme and was essential for heme utilization by iron-starved NTHI. Further, the Sap translocator permease mediated heme transport into the bacterial cytoplasm, thus defining a heretofore unknown mechanism of intracytoplasmic membrane heme transport in Haemophilus. Since we demonstrate multiple ligand specificity for the SapA-binding protein, we tested whether APs would compete with heme for SapA binding. We showed that human β-defensins 2 and 3, human cathelicidin LL-37, human neutrophil protein 1, and melittin displaced heme bound to SapA, thus supporting a hierarchy wherein immune evasion supercedes even the needed iron acquisition functions of the Sap system.  相似文献   

2.
Haemophilus influenzae has an absolute growth requirement for heme and a heme binding lipoprotein (HbpA) has been implicated in the utilization of this essential nutrient. HbpA was identified by examining clones from an H. influenzae genomic library that caused Escherichia coli harboring the clone to bind heme. However, HbpA has not been shown to mediate heme acquisition in H. influenzae. We constructed an insertional mutation of hbpA in a nontypeable H. influenzae strain and demonstrated a role for the gene in utilization of multiple heme sources. This is the first report confirming a role for HbpA in utilization of heme.  相似文献   

3.
Clostridium cellulovorans, an anaerobic bacterium, produces a small nonenzymatic protein called HbpA, which has a surface layer homology domain and a type I cohesin domain similar to those found in the cellulosomal scaffolding protein CbpA. In this study, we demonstrated that HbpA could bind to cell wall fragments from C. cellulovorans and insoluble polysaccharides and form a complex with cellulosomal cellulases endoglucanase B (EngB) and endoglucanase L (EngL). Synergistic degradative action of the cellulosomal cellulase and HbpA complexes was demonstrated on acid-swollen cellulose, Avicel, and corn fiber. We propose that HbpA functions to bind dockerin-containing cellulosomal enzymes to the cell surface and complements the activity of cellulosomes.  相似文献   

4.
The dipeptide permease (Dpp) is one of three genetically distinct peptide-transport systems in enteric bacteria. Dpp also plays a role in chemotaxis towards peptides. We have devised three selections for dpp mutations based on resistance to toxic peptides (bacilysin, valine-containing peptides, and bialaphos). All dpp mutations mapped to a single chromosomal locus between 77 and 78 min in Salmonella typhimurium and at 79.2 min in Escherichia coli. Expression of dpp was constitutive in both species but the absolute level of expression varied widely between strains. At least in part this difference in expression levels is determined by cis-acting sequences. The dpp locus of E. coli was cloned. The first gene in the operon, dppA, encodes a periplasmic dipeptide-binding protein (DBP) required for dipeptide transport and chemotaxis. Downstream of dppA are other genes required for transport but not for chemotaxis. The dipeptide-binding protein was found to share 26.5% sequence identity with the periplasmic oligopeptide-binding protein OppA.  相似文献   

5.
Directed enzyme evolution of 2-hydroxybiphenyl 3-monooxygenase (HbpA; EC ) from Pseudomonas azelaica HBP1 resulted in an enzyme variant (HbpA(ind)) that hydroxylates indole and indole derivatives such as hydroxyindoles and 5-bromoindole. The wild-type protein does not catalyze these reactions. HbpA(ind) contains amino acid substitutions D222V and V368A. The activity for indole hydroxylation was increased 18-fold in this variant. Concomitantly, the K(d) value for indole decreased from 1.5 mm to 78 microm. Investigation of the major reaction products of HbpA(ind) with indole revealed hydroxylation at the carbons of the pyrrole ring of the substrate. Subsequent enzyme-independent condensation and oxidation of the reaction products led to the formation of indigo and indirubin. The activity of the HbpA(ind) mutant monooxygenase for the natural substrate 2-hydroxybiphenyl was six times lower than that of the wild-type enzyme. In HbpA(ind), there was significantly increased uncoupling of NADH oxidation from 2-hydroxybiphenyl hydroxylation, which could be attributed to the substitution D222V. The position of Asp(222) in HbpA, the chemical properties of this residue, and the effects of its substitution indicate that Asp(222) is involved in substrate activation in HbpA.  相似文献   

6.
7.
The substrate reactivity of the flavoenzyme 2-hydroxybiphenyl 3-monooxygenase (EC, HbpA) was changed by directed evolution using error-prone PCR. In situ screening of mutant libraries resulted in the identification of proteins with increased activity towards 2-tert-butylphenol and guaiacol (2-methoxyphenol). One enzyme variant contained amino acid substitutions V368A/L417F, which were inserted by two rounds of mutagenesis. The double replacement improved the efficiency of substrate hydroxylation by reducing the uncoupled oxidation of NADH. With guaiacol as substrate, the two substitutions increased V(max) from 0.22 to 0.43 units mg(-1) protein and decreased the K'(m) from 588 to 143 microm, improving k'(cat)/K'(m) by a factor of 8.2. With 2-tert-butylphenol as the substrate, k'(cat) was increased more than 5-fold. Another selected enzyme variant contained amino acid substitution I244V and had a 30% higher specific activity with 2-sec-butylphenol, guaiacol, and the "natural" substrate 2-hydroxybiphenyl. The K'(m) for guaiacol decreased with this mutant, but the K'(m) for 2-hydroxybiphenyl increased. The primary structure of HbpA shares 20.1% sequence identity with phenol 2-monooxygenase from Trichosporon cutaneum. Structure homology modeling with this three-domain enzyme suggests that Ile(244) of HbpA is located in the substrate binding pocket and is involved in accommodating the phenyl substituent of the phenol. In contrast, Val(368) and Leu(417) are not close to the active site and would not have been obvious candidates for modification by rational design.  相似文献   

8.
Oxygen and other molecules of similar size take part in a variety of protein reactions. Therefore, it is critical to understand how these small molecules penetrate the protein matrix. The protein system studied in this case is horseradish peroxidase (HRP). We have converted the native HRP into a phosphorescent analog by replacing the heme prosthetic group by Pd-mesoporphyrin. Oxygen readily quenches the phosphorescence of Pd porphyrins, and this can be used to characterize oxygen diffusion through the protein matrix. Our measurements indicate that solvent viscosity and pH modulate the accessibility of the heme pocket relative to small molecules. The binding of the substrate benzohydroxamic acid (BHA) to the protein drastically impedes oxygen access to the heme pocket. These results indicate that, first, the penetration of small molecules through the protein matrix is a function of protein dynamics, and second, there are specific pathways for the diffusion of these molecules. The effect of substrate and pH on protein dynamics has been investigated with the use of molecular dynamics calculations. We demonstrate that the model of a "fluctuating entry point," as suggested by Zwanzig (J Chem Phys 1992;97:3587-3589), properly describes the diffusion of oxygen through the protein matrix.  相似文献   

9.
The periplasmic binding protein HmuT from Yersinia pestis (YpHmuT) is a component of the heme uptake locus hmu and delivers bound hemin to the inner-membrane-localized, ATP-binding cassette (ABC) transporter HmuUV for translocation into the cytoplasm. The mechanism of this process, heme transport across the inner membrane of pathogenic bacteria, is currently insufficiently understood at the molecular level. Here we describe the crystal structures of the substrate-free and heme-bound states of YpHmuT, revealing two lobes with a central binding cleft. Superposition of the apo and holo states reveals a minor tilting motion of the lobes surrounding concomitant with heme binding. Unexpectedly, YpHmuT binds two stacked hemes in a central binding cleft that is larger than those of the homologous periplasmic heme-binding proteins ShuT and PhuT, both of which bind only one heme. The hemes bound to YpHmuT are coordinated via a tyrosine side chain that contacts the Fe atom of one heme and a histidine that contacts the Fe atom of the other heme. The coordinating histidine is only conserved in a subset of periplasmic heme binding proteins suggesting that its presence predicts the ability to bind two heme molecules simultaneously. The structural data are supported by spectroscopic binding studies performed in solution, where up to two hemes can bind to YpHmuT. Isothermal titration calorimetry suggests that the two hemes are bound in discrete, sequential steps and with dissociation constants (KD) of ∼ 0.29  and ∼ 29 nM, which is similar to the affinities observed in other bacterial substrate binding proteins. Our findings suggest that the cognate ABC transporter HmuUV may simultaneously translocate two hemes per reaction cycle.  相似文献   

10.
Molecular dynamic simulations have been performed for wild-type Hydrogenobacter thermophilus cytochrome c(552), a b-type variant of the protein, and the apo state with the heme prosthetic group removed. In the b-type variant, Cys 10 and Cys 13 were mutated to alanine residues, and so the heme group was no longer covalently bound to the protein. Two 8-ns simulations have been performed for each system at 298 and 360 K. The simulations of the wild-type protein at 298 K show a very close agreement with experimental NMR data. A fluxional process involving the side chain of Met 59, which coordinates to the heme iron, is observed in accord with proposals from NMR studies. Overall, the structure and dynamical behavior of the protein during the simulations of the b-type variant is closely similar to that of the wild-type protein. However, side chains in the heme-binding site show larger fluctuations in the b-type variant simulation at 360 K. In addition, structural changes are seen for a number of residues close to the heme group, particularly Gly 22 and Ser 51. The simulations of the apo state show significant conformational changes for residues 50-59. These residues form a loop region, which packs over the heme group in the wild-type protein and hydrogen bonds to the heme propionate groups. In the absence of heme, in the apo state simulations, these residues form short but persistent regions of beta-sheet secondary structure. These could provide nucleation sites for the conversion to amyloid fibrils.  相似文献   

11.
We report a novel affinity‐based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L ‐histidine‐immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme‐tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag‐HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.  相似文献   

12.
A cluster of highly conserved leucine side chains from residues 9, 68, 85, 94, and 98 is located in the hydrophobic heme pocket of cytochrome c. The contributions of two of these, Leu 85 and Leu 94, have been studied using a protein structure-function-mutagenesis approach to probe their roles in the maintenance of overall structural integrity and electron transfer activity. Structural studies of the L85C, L85F, L85M, and L94S mutant proteins show that, in each case, the overall fold of cytochrome c is retained, but that localized conformational shifts are required to accommodate the introduced side chains. In particular, the side chains of Cys 85 and Phe 85 form energetically favorable interactions with Phe 82, whereas Met 85 takes on a more remote conformation to prevent an unfavorable interaction with the phenyl ring of Phe 82. In the case of the L94S mutant protein, the new polar group introduced is found to form hydrogen bonds to nearby carbonyl groups. In all proteins with substitutions at Leu 85, the hydrophobic nature of the heme pocket is preserved and no significant decrease in heme reduction potential is observed. Despite earlier predictions that Leu 85 is an important determinant in cytochrome c electron transfer partner complexation, our studies show this is unlikely to be the case because the considerable surface contour perturbations made by substitutions at this residue do not correspondingly translate into significant changes in electron transfer rates. For the L94S mutant protein, the substitution of a polar hydroxyl group directly into the hydrophobic heme pocket has a larger effect on heme reduction potential, but this is mitigated by two factors. First, the side chain of Ser 94 is rotated away from the heme group and, second, the side chain of Leu 98 shifts into a portion of the new space available, partially shielding the heme group. The Leu 94 Ser substitution does not perturb the highly conserved interface formed by the nearly perpendicular packing of the N- and C-terminal helices of cytochrome c, ruling this out as the cause of this mutant protein becoming thermally labile and having a lower functional activity. Our results show these effects are most likely attributable to disruption of the heme pocket region. Much of the ability of cytochrome c to absorb the introduction of mutations at Leu 85 and Leu 94 appears to be a consequence of the conformational flexibility afforded by the leucine cluster in this region as well as the presence of a nearby internal cavity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The TT1485 gene from Thermus thermophilus HB8 encodes a hypothetical protein of unknown function with about 20 sequence homologs of bacterial or archaeal origin. Together they form a family of uncharacterized proteins, the cluster of orthologous group COG3253. Using a combination of amino acid sequence analysis, three-dimensional structural studies and biochemical assays, we identified TT1485 as a novel heme-binding protein. The crystal structure reveals that this protein is a pentamer and each monomer exhibits a β-barrel fold. TT1485 is structurally similar to muconolactone isomerase, but this provided no functional clues. Amino acid sequence analysis revealed remote homology to a heme enzyme, chlorite dismutase. Strikingly, amino acid residues that are highly conserved in the homologous hypothetical proteins and chlorite dismutase cluster around a deep cavity on the surface of each monomer. Molecular modeling shows that the cavity can accommodate a heme group with a strictly conserved His as a heme ligand. TT1485 reconstituted with iron protoporphyrin IX chloride gave a low chlorite dismutase activity, indicating that TT1485 catalyzes a reaction other than chlorite degradation. The presence of a possible Fe–His–Asp triad in the heme proximal site suggests that TT1485 functions as a novel heme peroxidase to detoxify hydrogen peroxide within the cell.  相似文献   

14.
Successful iron acquisition plays a crucial role in bacterial virulence. Numerous Gram-negative pathogenic bacteria have developed a novel heme-acquisition system to steal iron from hosts. This system involves a cell-surface heme receptor, a periplasmic heme-transport protein (HTP) and inner-membrane proteins typical for ATP binding cassette transporters. We have cloned the gene encoding a periplasmic HTP from Pseudomonas aeruginosa, overexpressed it in Escherichia coli and purified it as a 33-kDa His-tagged protein. Heme-staining and heme-content assays reveal that the isolated HTP contains approximately 50% heme-bound and apo forms. The heme is noncovalently attached and can be transferred to apomyoglobin in vitro. Electron paramagnetic resonance and UV-vis spectroscopies indicate a five-coordinate, high-spin, ferric heme in HTP. HTP is reduced by dithionite but not by either dithiothreitol or ascorbate. Fluorescence and circular dichroism spectroscopies indicate a well-ordered structure for the HTP and a conformational change upon heme binding to apo-HTP. This was confirmed by limited proteolysis assays. Apo-HTP binds heme or protoporphyrin IX at 1:1 ratio with high affinity (K (d) approximately 1.2 and 14 nM, respectively). A BLASTP search revealed approximately 52 putative bacterial periplasmic heme transporters, which can be grouped into six classes, most of which are associated with pathogenic bacteria. Multiple sequence alignment reveals that these HTPs share low sequence similarity and no conserved common binding motif for heme ligation. However, a tyrosine residue (Y71) is highly conserved in the HTP sequences, which is likely an axial heme ligand in HTPs. Mutagenesis studies support Y71-heme iron ligation in the recombinant HTP.  相似文献   

15.
The water-soluble domain of rat hepatic holocytochrome b5 is an alphabeta protein containing elements of secondary structure in the sequence beta1-alpha1-beta4-beta3-alpha2-alpha3-beta5- alpha4-alpha5-beta2-alpha6. The heme group is enclosed by four helices, a2, a3, a4, and a5. To test the hypothesis that a small b hemoprotein can be constructed in two parts, one forming the heme site, the other an organizing scaffold, a protein fragment corresponding to beta1-alpha1-beta4-beta3-lambda-beta2-alpha6 was prepared, where lambda is a seven-residue linker bypassing the heme binding site. The fragment ("abridged b5") was found to contain alpha and beta secondary structure by circular dichroism spectroscopy and tertiary structure by Trp fluorescence emission spectroscopy. NMR data revealed a species with spectral properties similar to those of the full-length apoprotein. This folded form is in slow equilibrium on the chemical shift time scale with other less folded species. Thermal denaturation, as monitored by circular dichroism, absorption, and fluorescence spectroscopy, as well as size-exclusion chromatography-fast protein liquid chromatography (SEC-FPLC), confirmed the coexistence of at least two distinct conformational ensembles. It was concluded that the protein fragment is capable of adopting a specific fold likely related to that of cytochrome b5, but does not achieve high thermodynamic stability and cooperativity. Abridged b5 demonstrates that the spliced sequence contains the information necessary to fold the protein. It suggests that the dominating influence to restrict the conformational space searched by the chain is structural propensities at a local level rather than internal packing. The sequence also holds the properties necessary to generate a barrier to unfolding.  相似文献   

16.
Lewin A  Hederstedt L 《FEBS letters》2008,582(9):1330-1334
Bacillus subtilis heme A synthase is a membrane protein with 8 transmembrane segments. By using a two-step mutagenesis approach we have generated and selected a fully functional enzyme protein variant with a seven residue internal deletion. The biochemical properties of the shortened variant are similar to those of the normal enzyme. This could indicate that residue H209 in the mutant protein substitutes for the missing H216 as an axial ligand to the heme iron. Our results provide insight in routes of membrane protein evolution and the structure of heme A synthases.  相似文献   

17.
Cytoglobin is a recently discovered hemeprotein belonging to the globin superfamily together with hemoglobin, myoglobin and neuroglobin. Although distributed in almost all human tissues, cytoglobin has not been ascribed a specific function. Human cytoglobin is composed of 190 amino acid residues. Sequence alignments show that a protein core region (about 150 residues) is structurally related to hemoglobin and myoglobin, being complemented by about 20 extra residues both on the N and C termini. In the absence of exogenous ligands (e.g. O2), the cytoglobin distal HisE7 residue is coordinated to the heme Fe atom, thus decreasing the ligand affinity. The crystal structure of human cytoglobin (2.1 A resolution, 21.3% R-factor) highlights a three-over-three alpha-helical globin fold, covering residues 18-171; the 1-17 N-terminal, and the 172-190 C-terminal residue segments are disordered in both molecules of the crystal asymmetric unit. Heme hexa-coordination is evident in one of the two cytoglobin chains, whereas alternate conformation for the heme distal region, achieving partial heme penta-coordination, is observed in the other. Human cytoglobin displays a large apolar protein matrix cavity, next to the heme, not related to the myoglobin cavities recognized as temporary ligand docking stations. The cavity, which may provide a heme ligand diffusion pathway, is connected to the external space through a narrow tunnel nestled between the globin G and H helices.  相似文献   

18.
The prion protein occurs as a globular domain and a leading fragment whose structure is not well-defined. For the ovine species, all of the tryptophan residues are in the initial fragment, while the globular domain is rich in tyrosine residues. Using heme as a spectroscopic probe, we have studied the recombinant prion protein before and after a temperature-induced conformational change. As for most heme proteins, the absorption spectrum of heme-CO displays a red shift upon binding to the protein, and both the Y and W fluorescence are highly quenched. Flash photolysis kinetics of the PrP-heme-CO complex shows a low yield for the bimolecular phase, indicating a pocket around the hemes. By comparing the holoprotein and the truncated sequence corresponding to the globular domain, the stoichiometry was determined to be five hemes for the globular domain and two hemes for the leading fragment. At high temperature, the hemes are released; upon cooling, only two hemes bind, and only the tryptophan fluorescence is quenched; this would indicate that the globular domain has formed a more compact structure, which is inert with respect to the hydrophobic probe. The final state of polymerization is perturbed if the synthetic peptide "N3" (PrP residues 142-166, which include the first helix) is added to the prion protein solution; the temperature cycle no longer reduces the number of heme binding sites. This would indicate that the peptide may alter or inhibit the polymer formation.  相似文献   

19.
Lipoglycoproteins in the Chelicerata that bind and store heme appear to represent a unique evolutionary strategy to both mitigate the toxicity of heme and utilize the molecule as a prosthetic group. Knowledge of heme-binding storage proteins in these organisms is in its infancy and much of what is known is from studies with vitellogenins (Vg) and more recently the main hemolymph storage protein in ixodid ticks characterized as a hemelipoglyco-carrier protein (CP). Data have also been reported from another arachnid, the black widow spider, Latrodectus mirabilis, and seem to suggest that the heme-binding capability of these large multimeric proteins is not a phenomenon found only in the Acari. CP appears to be most closely related to Vg in ticks in terms of primary structure but post-translational processing is different. Tick CP and L. mirabilis high-density lipoprotein 1 (HDL1) are similar in that they consist of two subunits of approximate molecular masses of 90 and 100 kDa, are found in the hemolymph as the dominant protein, and bind lipids, carbohydrates and cholesterol. CP binds heme which may also be the case for HDL1 since the protein was found to contain a brown pigment when analyzed by native polyacrylamide gel electrophoresis. Vgs in ticks are composed of multiple subunits and are the precursor of the yolk protein, vitellin. The phylogeny of these proteins, regulation of gene expression and putative functions of binding and storing heme throughout reproduction, blood-feeding and development are discussed. Comparisons with non-chelicerate arthropods are made in order to highlight the mechanisms and putative functions of heme-binding storage proteins and their possible critical function in the evolution of hematophagy.  相似文献   

20.
Absorption, magnetic circular dichroism (MCD), and electrospray mass spectral (ESI-MS) data are reported for the heme binding NEAr iron Transporter (NEAT) domains of IsdA and IsdC, two proteins involved in heme scavenging by Staphylococcus aureus. The mass spectrometry data show that the NEAT domains are globular in structure and efficiently bind a single heme molecule. In this work, the IsdA NEAT domain is referred to as NEAT-A, the IsdC NEAT domain is referred to as NEAT-C, heme-free NEAT-C is NEAT-A and NEAT-C are inaccessible to small anionic ligands. Reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-A results in coordination by histidine and opens access, allowing for CO axial ligation, yielding 6-coordinate low-spin Fe(II) heme. In contrast, reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-C results in loss of the heme from the binding site of the protein due to the absence of a proximal histidine. The absorption and MCD data for NEAT-A closely match those previously reported for the whole IsdA protein, providing evidence that heme binding is primarily a property of the NEAT domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号