首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eukaryotes, mitochondrial activity controls ATP production, calcium dynamics, and redox state, thereby establishing physiological parameters governing the transduction of biochemical signals that regulate nuclear gene expression. However, these activities are commonly assumed to fulfill a ‘housekeeping’ function: necessary for life, but an epiphenomenon devoid of causal agency in the developmental flow of genetic information. Moreover, it is difficult to perturb mitochondrial function without generally affecting cell viability. For these reasons little is known about the extent of mitochondrial influence on gene activity in early development. Recent discoveries pertaining to the redox regulation of key developmental signaling systems together with the fact that mitochondria are often asymmetrically distributed in animal embryos suggests that they may contribute spatial information underlying differential specification of cell fate. In many cases such asymmetries correlate with localization of genetic determinants (i.e., mRNAs or proteins), particularly in embryos that rely heavily on cell-autonomous means of cell fate specification. In such embryos the localized genetic determinants play a dominant role, and any developmental information contributed by the mitochondria themselves is likely to be less obvious and more difficult to isolate experimentally. Hence, ‘regulative’ embryos that make more extensive use of conditional cell fate specification are better suited to experimental investigation of mitochondrial impacts on developmental gene regulation. Recent studies of the sea urchin embryo, which is a paradigmatic example of such a system, suggest that anisotropic distribution of mitochondria provides a source gradient of spatial information that directs epigenetic specification of the secondary axis via Nodal–Lefty signaling.  相似文献   

2.
Interspecies cloning might be used as an effective method to conserve endangered species and to support the study of nuclear-cytoplasm interaction. In this study, we describe the development of takin-bovine embryos in vitro produced by fusing takin ear fibroblasts with enucleated bovine oocytes and examine the fate of mitochondrial DNA in these embryos. We also compare the blastocyst development of takin-bovine embryos with yak-bovine and bovine-bovine embryos and compare the cell numbers of the blastocyst. Our results indicate that: (1) takin-bovine cloned embryos can develop to the blastocyst stage in vitro (5%), (2) blastocyst mitochondria DNA are derived primarily from bovine oocytes in spite of a little takin donor cell mitochondrial DNA, (3) using the same cloned protocol, development efficiency is significantly different between bovine-bovine cloning, yak-bovine, and takin-bovine cloning (48 vs. 28% vs. 5%, P < 0.01), and (4) cell numbers in the blastocysts of the three species of embryos were not different. These results suggest that the bovine oocytes can reprogram the takin, yak, and bovine fibroblast nuclei. However, the development efficiency of intra-species cloning tends to be higher than inter-species cloning; the more close the species of the donor cell is to the recipient oocyte (yak versus takin), the greater the blastocyst development in vitro.  相似文献   

3.
The fate of foreign mitochondrial DNA (mtDNA) following somatic cell nuclear transfer (SCNT) is still controversial. In this study, we examined the transmission of the heteroplasmic mtDNA of gaur donor cells and recipient bovine oocytes to an offspring and aborted and mummified fetuses at various levels during the development of gaur-bovine interspecies SCNT (iSCNT) embryos. High levels of the donor cell mtDNA were found in various tissue samples but they did not have any beneficial effect to the survival of iSCNT offspring. However, the factors on mtDNA inheritance are unique for each iSCNT experiment and depend on the recipient oocyte and donor cell used, which might play an important role in the efficiency of iSCNT.  相似文献   

4.
J S Eisen 《Neuron》1992,8(2):231-240
The role of cellular interactions in determining the fates of two identified motoneurons in the embryonic zebrafish was investigated by transplanting individual motoneurons from labeled donor embryos to unlabeled hosts. The results suggest that although these cells normally adopt different fates, they form an equivalence group in which one fate is primary and the other is secondary. Both cells are able to adopt the primary fate. A cell that has adopted the secondary fate can be induced to switch to the primary fate by ablating the cell that has adopted the primary fate, even many hours after axogenesis. Although interactions between the two cells appear to regulate which cell adopts the secondary fate, these interactions seem to be independent of neuromuscular activity.  相似文献   

5.
6.
BACKGROUND: Sperm-derived mitochondria are integrated into the oocyte at fertilization but seem to vanish during the early cleavage phase. The developmental potential of pre-implantation embryos seems to be closely related to their ability to induce degeneration of these mitochondria, but the mechanisms underlying their loss of function are not yet understood. This study focuses on the fate of paternal mitochondria in pre-implantation embryos. METHODS: Stimulation, collection and in vitro culture of oocytes from Callithrix jacchus, allows the study of the destiny of paternal mitochondria by utilizing immunostaining of pre-implantation embryos, fluorescence and laserscanning microscopy. Live pre-implantation embryos were stained with a fluorescence indicator reflecting mitochondrial membrane potential. RESULTS: Evidence indicating the loss of mitochondrial function was not found nor that apoptosis pathways were involved in the disappearance of paternally derived mitochondria. CONCLUSIONS: These findings may have implications for mitochondrially inherited diseases and could lead to new strategies for improving assisted reproduction.  相似文献   

7.
The heart is the first organ to function during vertebrate development and cardiac progenitors, are among the first cell lineages to be established from mesoderm cells emerging from the primitive streak during gastrulation. Cardiac progenitors have been mapped in the epiblast of pre-streak embryos. In the early chick gastrula they are located in the mid-primitive streak, from which they enter the mesoderm bilaterally. However, migration routes of cardiac progenitors have never been directly observed within the embryo and the factor(s) controlling their movement are not known. Furthermore, it is not understood how signals controlling cell movement are integrated with those that determine cell fate. Long-term video microscopy combined with GFP labelling and image processing enabled us to observe the movement patterns of prospective cardiac cells in whole embryos in real time. Embryo manipulations and the analysis of explants suggest that Wnt3a plays a crucial role in guiding these cells through a RhoA dependent mechanism involving negative chemotaxis. Wnt3a is expressed at high levels in the amniote primitive streak and ectopic signalling activity caused wider movement trajectories resulting in cardia bifida, which was rescued by dominant-negative Wnt3a. Our studies revealed Wnt3a-RhoA mediated chemo-repulsion as a novel mechanism guiding cardiac progenitors. This activity can act at long-range and does not interfere with cardiac cell fate specification.  相似文献   

8.
In vitro development and mitochondrial fate of macaca-rabbit cloned embryos   总被引:4,自引:0,他引:4  
Interspecies cloning may be used as an effective method to conserve highly endangered species and to support the development of non-human primate animal models for studying therapeutic cloning and nuclear-cytoplasm interaction. The use of the monkey model for biomedical research can avoid legal, ethical, and experimental limitations encountered in a clinical situation. We describe in this study the in vitro development of macaca-rabbit embryos produced by fusing macaca fibroblasts with enucleated rabbit oocytes and examine the fate of mitochondrial DNA in these embryos. We show that macaca-rabbit cloned embryos can develop to the blastocyst stage when cultured in vitro in HECM(10) +10% FBS and that mitochondrial DNA derived from donor somatic cells was detectable in cloned embryos throughout preimplantation development. These results suggest that (1) macaca fibroblast nuclei can dedifferentiate in enucleated metaphase II rabbit oocytes; (2) HECM(10) +10% FBS can break through the development block and support the development of macaca-rabbit cloned embryos to blastocysts; and (3) donor-cell-derived mitochondrial DNA is not eliminated until blastocyst stage.  相似文献   

9.
This study examined the fate of donor mitochondrial DNA during preimplantation development after nuclear transfer (NT) in cattle. Frozen-thawed cumulus cells were used as donor cells in the nuclear transfer. Mitochondrial DNA heteroplasmy in the nuclear transfer embryos was analyzed by allele-specific PCR (AS-PCR), direct DNA sequencing, and DNA chromatography. AS-PCR analysis for the detection of donor mitochondrial DNA was performed at the 1-, 2-, 4-, 8-, 16-cell, morula, and blastocyst stages of the embryos. The mitochondrial DNA from donor cells was detected at all developmental stages of the nuclear transfer embryos. However, mitochondrial DNA heteroplasmy was not observed in direct DNA sequencing of displacement-loop sequence from nuclear-transfer-derived blastocyst embryos. To confirm the mtDNA heteroplasmy in cloned embryos, the AS-PCR product from NT-derived blastocysts was analyzed by DNA sequencing and DNA chromatography. The nucleotides of NT-derived blastocysts were in accordance with the nucleotides from donor cells. These results indicate that the foreign cytoplasmic genome from donor cells was not destroyed by cytoplasmic events during preimplantation development that followed nuclear transfer.  相似文献   

10.
通过人-牛异种核移植技术获得异种克隆囊胚, 便于在不消耗人类卵母细胞的情况下从异种克隆胚中分离出人类干细胞。通过透明带下注射法将人胎儿成纤维细胞和牛耳成纤维细胞分别注入去核牛卵母细胞中构建异种和同种胚胎, 并比较两者之间的融合率、卵裂率、8-细胞发育率以及囊胚率。并对处于2-细胞、4-细胞、8-细胞、桑椹胚、囊胚阶段的异种克隆胚的线粒体DNA来源进行检测。结果表明, 异种克隆胚体外各个阶段的发育率均低于同种克隆胚, 尤其是8-细胞到囊胚阶段的发育率, 以及囊胚率都显著低于同种克隆胚(P<0.05)。异种克隆胚在2-细胞到桑椹胚阶段检测到人、牛线粒体DNA共存, 囊胚阶段只检测到牛线粒体DNA。结果表明: 牛卵母细胞可以重编程人胎儿成纤维细胞, 完成异种克隆胚植入前的胚胎发育, 异种克隆胚由于核质相互作用的不谐调, 影响其发育能力, 使其囊胚率显著低于同种克隆胚。牛线粒体DNA存在于植入前异种胚胎发育的各个阶段。异种克隆胚胎用于人类胚胎干细胞分离具有可行性。  相似文献   

11.
12.
Vegetal pole cells and commitment to form endoderm in Xenopus laevis   总被引:3,自引:0,他引:3  
In order to compare their states of commitment with their normal developmental fate, single vegetal pole cells from early Xenopus embryos were labeled and transplanted into the blastocoels of host embryos. In a previous study we showed, using this single cell transplantation assay, that vegetal pole cells become committed to endoderm by the early gastrula stage. In this paper we examine some properties of the commitment process. First, we show that it is gradual. When vegetal blastomeres are taken from progressively older embryos an increasing number of them enter only the endoderm, until by the early gastrula stage they all do. Second, we show that commitment can continue in vitro when an appropriate tissue mass is present. We suggest that commitment to form endoderm may be, in the right conditions, a cell autonomous process.  相似文献   

13.
A greater understanding of the fate of mitochondria injected into early preimplantation embryos would provide insights into mitochondrial biology and dynamics associated with development and disease. The ability to introduce foreign mitochondria into mouse embryos provides a means of tracking or following mitochondrial populations in vivo. Previously, injection of foreign mitochondria into the cytoplasm of the zygote was used to produce heteroplasmic mice. However, populations of introduced mitochondria decreased rapidly during development beyond the blastocyst stage. Therefore, the fate of exogenous mitochondria introduced into mouse ova was examined to determine viability and localization in comparison to endogenous mitochondria. Microinjection of murine mitochondria labeled with mitochondria-specific MitoTracker fluorophores allowed evaluation of subsequent viability and functionality of exogenous mitochondria populations in vivo. Characterization of mitochondrial survival and migration following microinjection illustrated toxic effects of MitoTracker Red upon exposure to laser confocal examination. In contrast, mitochondrial-specific fluorophores effectively detected foreign mitochondrial migration post-microinjection. The subsequent viability of the introduced mitochondria was observed through the blastocyst stage. Through the use of mitochondria-specific fluorophores, newly introduced mitochondria were further characterized and tracked post-transfer.  相似文献   

14.
To study the mechanisms of dorsal axis specification, the alteration in dorsal cell fate of cleavage stage blastomeres in axis-respecified Xenopus laevis embryos was investigated. Fertilized eggs were rotated 90° with the sperm entry point up or down with respect to the gravitational field. At the 8-cell stage, blastomeres were injected with the lineage tracers, Texas Red- or FITC-Dextran Amines. The distribution of the labeled progeny was mapped at the tail-bud stages (stages 35–38) and compared with the fate map of an 8-cell embryo raised in a normal orientation. As in the normal embryos, each blastomere in the rotated embryos has a characteristic and predictable cell fate. After 90° rotation the blastomeres in the 8-cell stage embryo roughly switched their position by 90°, but the fate of the blastomeres did not simply show a 90° switch appropriate for their new location. Four types of fate change were observed: (i) the normal fate of the blastomere is conserved with little change; (ii) the normal fate is completely changed and a new fate is adopted according to the blastomere's new position; (iii) the normal fate is completely changed, but the new fate is not appropriate for its new position; and (4) the blastomere partially changed its fate and the new fate is a combination of its original fate and a fate appropriate to its new location. According to the changed fates, the blastomeres that adopt dorsal fates were identified in rotated embryos. This identification of dorsal blastomeres provides basic important information for further study of dorsal signaling in Xenopus embryos.  相似文献   

15.
When they are derived from blastodermal cells of the pre-primitive streak in vitro, the pluripotency of Chicken Embryonic Stem Cells (cESC) can be controlled by the cPouV and Nanog genes. These cESC can differentiate into derivatives of the three germ layers both in vitro and in vivo, but they only weakly colonize the gonads of host embryos. By contrast, non-cultured blastodermal cells and long-term cultured chicken primordial germ cells maintain full germline competence. This restriction in the germline potential of the cESC may result from either early germline determination in the donor embryos or it may occur as a result of in vitro culture. We are interested in understanding the genetic determinants of germline programming. The RNA binding protein Cvh (Chicken Vasa Homologue) is considered as one such determinant, although its role in germ cell physiology is still unclear. Here we show that the exogenous expression of Cvh, combined with appropriate culture conditions, induces cESC reprogramming towards a germ cell fate. Indeed, these cells express the Dazl, Tudor and Sycp3 germline markers, and they display improved germline colonization and adopt a germ cell fate when injected into recipient embryos. Thus, our results demonstrate that Vasa can drive ES cell differentiation towards the germ cell lineage, both in vitro and in vivo.  相似文献   

16.
Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.  相似文献   

17.
Although ribonucleases H (RNases H) have long been implicated in DNA metabolism, they are not required for viability in prokaryotes or unicellular eukaryotes. We generated Rnaseh1(-/-) mice to investigate the role of RNase H1 in mammals and observed developmental arrest at E8.5 in null embryos. A fraction of the mainly nuclear RNase H1 was targeted to mitochondria, and its absence in embryos resulted in a significant decrease in mitochondrial DNA content, leading to apoptotic cell death. This report links RNase H1 to generation of mitochondrial DNA, providing direct support for the strand-coupled mechanism of mitochondrial DNA replication. These findings also have important implications for therapy of mitochondrial dysfunctions and drug development for the structurally related RNase H of HIV.  相似文献   

18.
The aim of this study was to develop a method to generate identical twins and triplets with predicted gender. As a first step toward that aim, single blastomeres obtained from EGFP expressing eight-cell stage embryos and either diploid or tetraploid host embryos were used to compose chimera. We could follow the fate of EGFP expressing diploid blastomere derived cells in 3.5- and 4.5-day-old chimera embryos in vitro. We found that the diploid blastomere-derived cells had significantly higher chance to contribute to the inner cell mass if tetraploid host embryos were applied. After that, we developed a quick and reliable multiplex PCR strategy for sex diagnosis from single blastomeres by simultaneous amplification of the homologous ZFX and ZFY genes. By composed chimeras using single blastomeres, derived from sexed eight-cell stage embryos and a tetraploid host embryo, we could get preplanned sex newborns, wholly derived from these blastomeres. Among these mice, identical twins and a triplet were identified by microsatellite analysis. Unlike clones produced by nuclear transfer, these mice are identical at both the nuclear as well as mitochondrial DNA level. Therefore, the tetraploid embryo complementation method to produce monozygotic twins and triplets could be a valuable tool both in biomedical and agricultural applications.  相似文献   

19.
The developmental fate of single blastomeres from eight-cell murine embryos reaggregated with intact two-cell embryos was evaluated after culture. Fluorescein isothiocyanate was used to follow developmental fate in preblastocyst chimeric embryos. Expression of stage-specific embryonic antigen 3 was used to assay developmental fate at the blastocyst stage, and glucosephosphate isomerase variants were used to assay at the blastocyst stage and after implantation. The results suggest that the descendents of the 1/8 component stay in a patch area and do not selectively migrate to the inner cell mass (ICM). This is in contrast to many studies that indicate that smaller blastomeres, which are more advanced in development, migrate to the ICM. The differences in experimental designs are discussed. Possible mechanisms for this phenomena are that the eight-cell blastomere is physically excluded from the ICM by position or polarization, or that it is differentiating ahead of the two-cell component and becomes trophectoderm.  相似文献   

20.
Summary The proteins synthesized before the 512-cell stage by Xenopus blastomeres with different fates were compared by one dimensional PAGE. Blastomeres that contributed more progeny to antero-dorsal axial structures produced proportionately more of two proteins of 225000 and 245000 daltons. Additionally, these proteins were reversibly increased in ventralized embryos and were decreased in dorsalized embryos. These observations indicate that some proteins that are synthesized during cleavage stages are expressed to different degrees in different regions of the embryo, that their expression can be correlated to cell fate in the normal embryo, and that their expression is altered quantitatively in dorsalized and ventralized embryos. The inverse relationship between the production of these proteins and the potential to produce dorsal structures in the normal and in dorsalized/ventralized embryos is consistent with a model in which cell fate is influenced by a gradient of particular proteins.Supported by NIH grants HD 06619 (SLK) and GM 33932 (MLK).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号