首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.  相似文献   

2.
Brief tetanic stimulation potentiates synaptic transmission both in the CA1 and dentate area of slices cut from normal rats. This long-term potentiation (LTP) was assayed in slices made at various times from rats subjected to complete bilateral sectioning of all subcortical afferents which enter the hippocampus. Over about one week survival time, LTP is present in the CA1 region of all and also in the fascia dentata of about 50% of slices. We found no signs of LTP in the dentate area of slices cut over 8 weeks after deafferentation, while the responses were clearly potentiated in the CA1 area of the same slices. Four week was the longest period when a somewhat modified version of LTP could be produced in the subcortically deafferented dentate area. The results confirm previous reports that subcortical afferents mediate some unknown factors essential for maintenance of long-term plasticity of intrinsic synapses in the fascia dentata. This unidentified, perhaps trophic influence diminishes in about 4 weeks after severing the subcortical fibers. In contrast, maintenance of subcortical inputs are apparently not required for the LTP in the intrinsic CA1 synapses.  相似文献   

3.
Kwon HB  Castillo PE 《Neuron》2008,57(1):108-120
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors and a postsynaptic calcium rise. Unlike classical LTP, expression of this mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network.  相似文献   

4.
The expression mechanism of long-term potentiation (LTP) remains controversial. Here we combine electrophysiology and Ca(2+) imaging to examine the role of silent synapses in LTP expression. Induction of LTP fails to change p(r) at these synapses but instead mediates an unmasking process that is sensitive to the inhibition of postsynaptic membrane fusion. Once unmasked, however, further potentiation of formerly silent synapses leads to an increase in p(r). The state of the synapse thus determines how LTP is expressed.  相似文献   

5.
6.
The activation of silent synapses is a proposed mechanism to account for rapid increases in synaptic efficacy such as long-term potentiation (LTP). Using simultaneous recordings from individual pre- and postsynaptic neurons in organotypic hippocampal slices, we show that two CA3 neurons can be connected entirely by silent synapses. Increasing release probability or application of cyclothiazide does not produce responses from these silent synapses. Direct measurement of NMDAR-mediated postsynaptic responses in all-silent synaptic connections before and after LTP induction show no change in failure rate, amplitude, or area. These data do not support hypotheses that synapse silent results from presynaptic factors or that LTP results from increases in presynaptic glutamate release. LTP is also associated with an increase in postsynaptic responsiveness to exogenous AMPA. We conclude that synapse silence, activation, and expression of LTP are postsynaptic.  相似文献   

7.
LTP and LTD: an embarrassment of riches   总被引:62,自引:0,他引:62  
Malenka RC  Bear MF 《Neuron》2004,44(1):5-21
LTP and LTD, the long-term potentiation and depression of excitatory synaptic transmission, are widespread phenomena expressed at possibly every excitatory synapse in the mammalian brain. It is now clear that "LTP" and "LTD" are not unitary phenomena. Their mechanisms vary depending on the synapses and circuits in which they operate. Here we review those forms of LTP and LTD for which mechanisms have been most firmly established. Examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.  相似文献   

8.
A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning.  相似文献   

9.
Sala C 《Neuro-Signals》2002,11(4):213-223
Dendritic spines are discrete membrane protrusions from dendritic shafts where the large majority of excitatory synapses are located. Their highly heterogeneous morphology is thought to be the morphological basis for synaptic plasticity. Electron microscopy and time-lapse imaging studies have suggested that the shape and number of spines can change after long-term potentiation (LTP), although there is no evidence that morphological changes are necessary for LTP induction and maintenance. An increasing number of proteins have been found to be morphogens for dendritic spines and provide new insights into the molecular mechanisms regulating spine formation and morphology.  相似文献   

10.
F Zheng  J P Gallagher 《Neuron》1992,9(1):163-172
Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.  相似文献   

11.
Chevaleyre V  Castillo PE 《Neuron》2004,43(6):871-881
Repetitive activation of glutamatergic fibers that normally induces long-term potentiation (LTP) at excitatory synapses in the hippocampus also triggers long-term depression at inhibitory synapses (I-LTD) via retrograde endocannabinoid signaling. Little is known, however, about the physiological significance of I-LTD. Here, we show that synaptic-driven release of endocannabinoids is a highly localized and efficient process that strongly depresses cannabinoid-sensitive inhibitory inputs within the dendritic compartment of CA1 pyramidal cells. By removing synaptic inhibition in a restricted area of the dendritic tree, endocannabinoids selectively "primed" nearby excitatory synapses, thereby facilitating subsequent induction of LTP. This induction of local metaplasticity is a novel mechanism by which endocannabinoids can contribute to the storage of information in the brain.  相似文献   

12.
Long-term potentiation in the thalamo-cortical input to the somatosensory cortex barrel field has been reported to be inducible in vitro only during a narrow critical period of the first postnatal week. Here we explored whether this is due to inability of adult synapses to express LTP or lack of appropriate conditions for LTP induction in slice preparations. We recorded thalamo-cortical field potentials (FPs) from the barrel field of chronically prepared adult rats. In the first series, several parameters of conditioning tetanization of thalamus (T) have been tried. Statistically significant LTP of 135-150% relative to the baseline was observed only in rare cases (3/18) so that the mean changes were not statistically significant. In the second series, five trains of 100 Hz stimulation of T were paired with a "reinforcing" stimulation of the lateral hypothalamus (LH). In most cases (9/13) thalamo-cortical FPs were potentiated. The mean post-tetanic amplitude was 238 +/- 42% (+/- SEM) relative to the baseline (n = 13). The potentiation persisted for > > 1 hr and typically even further increased when tested 24-48 hr later. LTP magnitude strongly correlated with the initial paired-pulse ratio (PPR, coefficient of correlation r = 0.98) so that LTP magnitude was larger (333 +/- 107, n = 6) in cases with PPR > 1.3. The mean PPR tended to decrease after LTP (from 2.05 to 1.65). Altogether the results suggest that LTP is inducible in the thalamo-cortical input to the barrel field of normal adult rats. The dependence of LTP magnitude upon the initial PPR suggests that inputs with low initial release probability undergo larger LTP. Together with the tendency to a decrease in the PPR this suggests an involvement of presynaptic mechanisms in the maintenance of neocortical LTP.  相似文献   

13.
突触长时程增强形成机制的研究进展   总被引:13,自引:0,他引:13  
Xu L  Zhang JT 《生理科学进展》2001,32(4):298-301
高等动物脑内突触传递的可塑性是近30年来神经科学研究的热点,突触传递长时程增强(long-term potentiation,LTP)是神经元可塑性的反映,其形成主要与突触后机制有关。过去关于LTP机制的研究主要集中于N-甲基-D门冬氨酸(NMDA)受体的特征及该受体被激活后的细胞内级联反应,现认为脑内存在只具有NMDA受体而不具有α-氨基羟甲基恶唑丙酸(AMPA)受体的“静寂突触(silent synapse)”,这一概念的提出,使人们认识到AMPA受体在LTP表达的突触后机制中的重要作用。  相似文献   

14.
Bozdagi O  Shan W  Tanaka H  Benson DL  Huntley GW 《Neuron》2000,28(1):245-259
It is an open question whether new synapses form during hippocampal LTP. Here, we show that late-phase LTP (L-LTP) is associated with a significant increase in numbers of synaptic puncta identified by synaptophysin and N-cadherin, an adhesion protein involved in synapse formation during development. During potentiation, protein levels of N-cadherin are significantly elevated and N-cadherin dimerization is enhanced. The increases in synaptic number and N-cadherin levels are dependent on cAMP-dependent protein kinase (PKA) and protein synthesis, both of which are also required for L-LTP. Blocking N-cadherin adhesion prevents the induction of L-LTP, but not the early-phase of LTP (E-LTP). Our data suggest that N-cadherin is synthesized during the induction of L-LTP and recruited to newly forming synapses. N-cadherin may play a critical role in L-LTP by holding nascent pre-and postsynaptic membranes in apposition, enabling incipient synapses to acquire function and contribute to potentiation.  相似文献   

15.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.  相似文献   

16.
Electrical feedback in chemical synapses and the efficacy of synaptic transmission grow with the increase in the gap resistance, so they should be higher in invaginated synapses than in the flat ones. So the plastic changes in the invagination depth may provide a morphological basis for long-term changes in synaptic efficacy: long-term potentiation (LTP) in brain and retinal synapses. In retinal photoreceptor triad synapses, the electrical feedback can provide an "operational" (instantaneous) control of synaptic transmission.  相似文献   

17.
Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or "metaplasticity" is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Galphaq and Galphas coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.  相似文献   

18.
Lu W  Man H  Ju W  Trimble WS  MacDonald JF  Wang YT 《Neuron》2001,29(1):243-254
Long-term potentiation (LTP) of excitatory transmission in the hippocampus likely contributes to learning and memory. The mechanisms underlying LTP at these synapses are not well understood, although phosphorylation and redistribution of AMPA receptors may be responsible for this form of synaptic plasticity. We show here that miniature excitatory postsynaptic currents (mEPSCs) in cultured hippocampal neurons reliably demonstrate LTP when postsynaptic NMDA receptors are briefly stimulated with glycine. LTP of these synapses is accompanied by a rapid insertion of native AMPA receptors and by increased clustering of AMPA receptors at the surface of dendritic membranes. Both LTP and glycine-facilitated AMPA receptor insertion are blocked by intracellular tetanus toxin (TeTx), providing evidence that AMPA receptors are inserted into excitatory synapses via a SNARE-dependent exocytosis during LTP.  相似文献   

19.
Activation of postsynaptic alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) by calcium influx is a prerequisite for the induction of long-term potentiation (LTP) at most excitatory synapses in the hippocampus and cortex. Here we show that postsynaptic LTP is unaffected at parallel fiber-Purkinje cell synapses in the cerebellum of alphaCaMKII(-/-) mice. In contrast, a long-term depression (LTD) protocol resulted in only transient depression in juvenile alphaCaMKII(-/-) mutants and in robust potentiation in adult mutants. This suggests that the function of alphaCaMKII in parallel fiber-Purkinje cell plasticity is opposite to its function at excitatory hippocampal and cortical synapses. Furthermore, alphaCaMKII(-/-) mice showed impaired gain-increase adaptation of both the vestibular ocular reflex and optokinetic reflex. Since Purkinje cells are the only cells in the cerebellum that express alphaCaMKII, our data suggest that an impairment of parallel fiber LTD, while leaving LTP intact, is sufficient to disrupt this form of cerebellar learning.  相似文献   

20.
BACKGROUND: At synapses between neurons in the brain, transmitter molecules are released from presynaptic terminals in multi-molecular packets called quanta. Excitatory synapses in the CA1 region of the hippocampus show a long-lasting increase in strength known as long-term potentiation (LTP), which may be important for some kinds of learning and memory. LTP can involve an increase in the number of quanta released, or in the size of the response each quantum produces in the postsynaptic cell, or both, depending on the initial condition of the synapse. These synapses also show two forms of brief potentiation: post-tetanic potentiation (PTP), which lasts for a minute or less and involves only modifications at the presynaptic terminal, and short-term potentiation (STP), which lasts rather longer. The significance of STP, the mechanisms whereby it is produced and its relationship to other forms of potentiation are poorly understood. We have studied STP electrophysiologically using slices of the rat hippocampus maintained in vitro. RESULTS: We found that STP, like LTP, can involve increases in either the number of quanta released, or their postsynaptic effect, or both. The rule governing the relative contribution from these two mechanisms appears to be the same as operates during LTP. Both the presynaptic and postsynaptic changes can develop equally rapidly and so must involve fast-acting messenger systems. CONCLUSIONS: STP seems to be a separate phenomenon from PTP, but appears closely related to LTP. The rapidity of its onset may require a reappraisal of current understanding of the messenger systems involved in bringing about changes in synaptic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号